Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 112(11): 4617-4626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464480

RESUMO

Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to arise from neural crest-derived immature cells. The prognosis of patients with high-risk or recurrent/refractory neuroblastoma remains quite poor despite intensive multimodality therapy; therefore, novel therapeutic interventions are required. We examined the expression of a cell adhesion molecule CD146 (melanoma cell adhesion molecule [MCAM]) by neuroblastoma cell lines and in clinical samples and investigated the anti-tumor effects of CD146-targeting treatment for neuroblastoma cells both in vitro and in vivo. CD146 is expressed by 4 cell lines and by most of primary tumors at any stage. Short hairpin RNA-mediated knockdown of CD146, or treatment with an anti-CD146 polyclonal antibody, effectively inhibited growth of neuroblastoma cells both in vitro and in vivo, principally due to increased apoptosis via the focal adhesion kinase and/or nuclear factor-kappa B signaling pathway. Furthermore, the anti-CD146 polyclonal antibody markedly inhibited tumor growth in immunodeficient mice inoculated with primary neuroblastoma cells. In conclusion, CD146 represents a promising therapeutic target for neuroblastoma.


Assuntos
Anticorpos/uso terapêutico , Antígeno CD146/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Neuroblastoma/terapia , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , NF-kappa B/metabolismo , Recidiva Local de Neoplasia , Transplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Prognóstico , Transdução de Sinais , Esferoides Celulares , Transdução Genética/métodos
2.
J Neurosurg ; 134(6): 1772-1782, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32707539

RESUMO

OBJECTIVE: Glioma stem cells (GSCs) are responsible for tumor initiation, therapeutic resistance, and recurrence. CD146 is mainly expressed in dividing GSCs and regulates cell cycle progression. However, the evaluation of the efficacy of targeted therapy against CD146 in vivo remains to be investigated. In this study, the authors aimed to develop gene therapy targeting GSCs using chitosan oligosaccharide lactate (COL) nanoparticles (NPs) conjugated with folic acid-polyethylene glycol (FA-PEG-COL NPs) for in vitro and in vivo delivery of CD146 small-interfering RNA (siCD146) and to determine the effect of CD146 knockdown on tumor growth. METHODS: To examine the uptake of NPs by tumor cells, immunofluorescence staining, flow cytometry, and in vivo imaging were performed. The knockdown effect of siCD146 was measured by western blot and water-soluble tetrazolium salt-8 assay in mouse glioma cells. The efficacy of siRNA therapy-targeted GSCs was evaluated by monitoring tumor growth through in vivo imaging and histological analysis. RESULTS: In vivo accumulation of the FA-PEG-COL NPs in subcutaneous and intracranial gliomas following NP administration via a mouse tail vein was observed. Additionally, in vitro delivery of siCD146 ionically cross-linked NPs, reduced CD146 levels, and suppressed growth in the glioma tumor sphere. Evaluation of the in vivo therapeutic effects of siCD146-cross-linked NPs in a mouse glioma model revealed significant suppression of intracranial tumor growth, with complete removal of the tumor observed in some mice on histological examination. Furthermore, delivery of siCD146 significantly reduced the Ki-67 index in residual tumor tissues relative to that in control mice. CONCLUSIONS: CD146 is a potential therapeutic target, and folic acid-conjugated NPs delivering siRNA may facilitate gene therapy in malignant gliomas.


Assuntos
Neoplasias Encefálicas/terapia , Ácido Fólico/administração & dosagem , Glioma/terapia , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/genética , Linhagem Celular Tumoral , Galinhas , Marcação de Genes/métodos , Terapia Genética/métodos , Glioma/genética , Glioma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Nus , RNA Interferente Pequeno/genética
3.
Int J Cancer ; 147(6): 1666-1679, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32022257

RESUMO

Initially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival. We thus generated a novel monoclonal antibody, the M2J-1 mAb, which specifically targets sCD146, but not membrane CD146, and counteracts these effects. In our study, we analyzed the effects of sCD146 on the dissemination and the associated procoagulant phenotype in two highly invasive human CD146-positive cancer cell lines (ovarian and melanoma). Results show that sCD146 induced epithelial to mesenchymal transition, favored the generation of cancer stem cells and increased the membrane expression of tissue factor. Treatment of cancer cells with sCD146 in two experimental models (subcutaneous xenografting and intracardiac injection of cancer cells in nude mice) led to increased tumor dissemination and procoagulant activity. The M2J-1 mAb drastically reduced metastasis but also procoagulant activity, in particular by decreasing the number of circulating tumor microparticles, and blocked the relevant signaling pathways as demonstrated by RNA expression profiling experiments. Thus, our findings demonstrate that sCD146 mediates important pro-metastatic and procoagulant effects in two CD146-positive tumors. Targeting sCD146 with the newly generated M2J-1 mAb could constitute an innovative strategy for preventing dissemination and thromboembolism in many CD146-positive tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Melanoma/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Tromboembolia/prevenção & controle , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/sangue , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Melanoma/sangue , Melanoma/complicações , Melanoma/secundário , Camundongos , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/patologia , Tromboembolia/etiologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Res ; 17(5): 1049-1062, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745464

RESUMO

Prostate Cancer is the most common cancer and the second leading cause of cancer-related death in males. When prostate cancer acquires castration resistance, incurable metastases, primarily in the bone, occur. The aim of this study is to test the applicability of targeting melanoma cell adhesion molecule (MCAM; CD146) with a mAb for the treatment of lytic prostate cancer bone metastasis. We evaluated the effect of targeting MCAM using in vivo preclinical bone metastasis models and an in vitro bone niche coculture system. We utilized FACS, cell proliferation assays, and gene expression profiling to study the phenotype and function of MCAM knockdown in vitro and in vivo. To demonstrate the impact of MCAM targeting and therapeutic applicability, we employed an anti-MCAM mAb in vivo. MCAM is elevated in prostate cancer metastases resistant to androgen ablation. Treatment with DHT showed MCAM upregulation upon castration. We investigated the function of MCAM in a direct coculture model of human prostate cancer cells with human osteoblasts and found that there is a reduced influence of human osteoblasts on human prostate cancer cells in which MCAM has been knocked down. Furthermore, we observed a strongly reduced formation of osteolytic lesions upon bone inoculation of MCAM-depleted human prostate cancer cells in animal model of prostate cancer bone metastasis. This phenotype is supported by RNA sequencing (RNA-seq) analysis. Importantly, in vivo administration of an anti-MCAM human mAb reduced the tumor growth and lytic lesions. These results highlight the functional role for MCAM in the development of lytic bone metastasis and suggest that MCAM is a potential therapeutic target in prostate cancer bone metastasis. IMPLICATIONS: This study highlights the functional application of an anti-MCAM mAb to target prostate cancer bone metastasis.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/secundário , Animais , Antineoplásicos Imunológicos/farmacologia , Neoplasias Ósseas/genética , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Pharm ; 15(8): 3434-3441, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29889530

RESUMO

Peripheral arterial disease (PAD) consists of a persistent obstruction of lower-extremity arteries further from the aortic bifurcation attributable to atherosclerosis. PAD is correlated with an elevated risk of morbidity and mortality as well as of deterioration of the quality of life with claudication and chronic leg ischemia being the most frequent complications. Therapeutic angiogenesis is a promising therapeutic strategy that aims to restore the blood flow to the ischemic limb. In this context, assessing the efficacy of pro-angiogenic treatment using a reliable noninvasive imaging technique would greatly benefit the implementation of this therapeutic approach. Herein, we describe the angiogenesis and perfusion recovery characteristics of a mouse model of PAD via in vivo positron emission tomography (PET) imaging of CD146 expression. For that, ischemia was generated by ligation and excision of the right femoral artery of Balb/C mice and confirmed through laser Doppler imaging. The angiogenic process, induced by ischemia, was noninvasively monitored and quantified through PET imaging of CD146 expression in the injured leg using a 64Cu-labeled anti-CD146 monoclonal antibody, 64Cu-NOTA-YY146, at post-operative days 3, 10, and 17. The CD146-specific character of 64Cu-NOTA-YY146 was verified via a blocking study performed in another cohort at day 10 after surgery. Tracer uptake was correlated with in situ CD146 expression by histological analysis. PET scan results indicated that 64Cu-NOTA-YY146 uptake in the injured leg was significantly higher, with the highest uptake with a value of 14.1 ± 2.0 %ID/g at post-operative day 3, compared to the normal contralateral hindlimb, at all time points (maximum uptake of 2.2 ± 0.2 %ID/g). The pre-injection of a blocking dose resulted in a significantly lower tracer uptake in the ischemic hindlimb on day 10 after surgery, confirming tracer specificity. CD146/CD31 immunofluorescent co-staining showed an excellent correlation between the high uptake of the tracer with in situ CD146 expression levels and a marked co-localization of CD146 and CD31 signals. In conclusion, persistent and CD146-specific tracer accumulation in the ischemic hindlimb was observed, confirming the feasibility of 64Cu-NOTA-YY146 to be used as an imaging agent to monitor the progression of angiogenesis and recovery in future PAD research.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Isquemia/diagnóstico por imagem , Doença Arterial Periférica/diagnóstico por imagem , Animais , Anticorpos Monoclonais/química , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/metabolismo , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Modelos Animais de Doenças , Feminino , Artéria Femoral/diagnóstico por imagem , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Compostos Heterocíclicos com 1 Anel/química , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/etiologia , Isquemia/patologia , Fluxometria por Laser-Doppler , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Doença Arterial Periférica/etiologia , Doença Arterial Periférica/patologia , Tomografia por Emissão de Pósitrons/métodos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...