RESUMO
Las moléculas de adhesión son receptores funcionales que se expresan en la membrana celular y participan activamente en múltiples fenómenos fisiológicos y patológicos, como son: la organización de las células animales durante el desarrollo embrionario mediante su diferenciación, migración y localización en órganos y tejidos; en los fenómenos de la hemostasia, como la agregación plaquetaria y la formación de trombos; en la reparación tisular y la cicatrización de las heridas; en la diseminación tumoral o metástasis, y desempeñan un papel fundamental en la migración y activación de los leucocitos en la inmunovigilancia, en el desarrollo de la respuesta inflamatoria y de los mecanismos que intervienen en la respuesta inmune celular. La característica fundamental de estos receptores es la capacidad de transducir señales al interior de la célula y modular cascadas de señales inducidas por diferentes factores de crecimiento. El conocimiento de la regulación de la expresión de estas, su estado de activación en la superficie celular, la distribución celular y tisular y sus posibles interacciones, son de crucial importancia en la comprensión de los mecanismos de acción involucrados en el funcionamiento de las células que participan en la defensa inmunológica, en la fisiopatogenia de diferentes enfermedades y en el desarrollo de nuevas estrategias terapéuticas, por lo que el estudio del comportamiento de estas moléculas en el curso de diferentes enfermedades, constituye una línea de trabajo de gran actualidad e interés en el campo de la inmunología y en la práctica médica(AU)
Assuntos
Moléculas de Adesão Celular/fisiologia , Moléculas de Adesão Celular/uso terapêutico , Integrinas/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Selectinas/fisiologia , Imunidade CelularRESUMO
Homotropic T cell adhesion, as generally studied, consists of a rapid, transient binding process that is measured over a 15-120 min. period. Here we report a slow type of adhesion process occurring with human or rhesus T cells, purified from peripheral blood, that manifests itself by the formation of rounded, multi-layer clusters which may contain hundreds of cells. The maximal number and size of the clusters peak 1-2 days after the addition of phorbol ester, an absolute requirement. The number of clusters formed is proportional to phorbol ester concentration up to 1.25 ng/mL. Phorbol esters such as phorbol myristate acetate (PMA), phorbol dibutyrate (PDB), and 7-octylindolactam (OIL) induced optimal cluster formation at 1-13 ng/mL, levels slightly higher than that required to induce mitogenesis of purified T cells. Phorbol itself and the alpha-form of the ester were inactive. Both cluster formation and mitogenesis (stimulated by Con A or anti-CD3) are completely inhibited by staurosporin at 12.5 ng/mL. Even at 2.5 ng/mL, 74% of cluster formation was inhibited, which strongly implies a crucial role for protein kinase C. In the presence of accessory cells, T cell clusters were suppressed. Monoclonal Ab such as anti-CD3, mouse anti-CD3 followed by anti-mouse IgG, anti-CD4, anti-CD4A, anti-CD2, anti-CD8, and anti-CD45 did not induce cluster formation. None were inhibitory or stimulatory in the presence of PMA, except for anti-CD3 which enhanced cluster formation by 26%. However, anti-LFA-1 beta-chain (mouse monoclonal) completely blocked cluster formation over the range studied (63-1000 ng/mL) for both human and rhesus cells; rat anti-LFA-1 only blocked human cell adhesion. Anti LFA-1 only partially inhibited T cell mitogenesis. These results show that slow cluster formation shares the LFA-1 and phorbol ester requirements of the rapid adhesion of T cells requiring LFA-1 and ICAM-1. However, cluster occurs at a very low phorbol ester concentration, appears more sensitive to staurosporin inhibition, and is not stimulated via the TCR receptor like the rapid adhesion process. We hypothesize that certain neuronal processes, induced by phorbol ester, and which also show a similar protein kinase C activation time course, may share mechanisms in common with cluster formation.
Assuntos
Adesão Celular/imunologia , Agregação Celular/imunologia , Teste de Inibição de Aderência Leucocítica , Antígeno-1 Associado à Função Linfocitária/fisiologia , Proteína Quinase C/fisiologia , Linfócitos T/imunologia , Animais , Adesão Celular/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Macaca mulatta , Camundongos , Ésteres de Forbol/farmacologia , RatosRESUMO
Ab: Homotropic T cell adhesion, as generally studied, consists of a rapid, transient binding process that is measured over a 15-120 min. period. Here we report a slow type of adhesion process occurring with human or rhesus T cells, purified from peripheral blood, that manifests itself by the formation of rounded, multi-layer clusters which may contain hundreds of cells. The maximal number and size of the clusters peak 1-2 days after the addition of phorbol ester, an absolute requirement. The number of clusters formed is proportional to phorbol ester concentration up to 1.25 ng/mL. Phorbol esters such as phorbol myristate acetate (PMA), phorbol dibutyrate (PDB), and 7-octylindolactam (OIL) induced optimal cluster formation at 1-13 ng/mL, levels slightly higher than that required to induce mitogenesis of purified T cells. Phorbol itself and the alpha-form of the ester were inactive. Both cluster formation and mitogenesis (stimulated by Con A or anti-CD3) are completely inhibited by staurosporin at 12.5 ng/mL. Even at 2.5 ng/mL, 74 percent of cluster formation was inhibited, which strongly implies a crucial role for protein kinase C. In the presence of accessory cells, T cell clusters were suppressed. Monoclonal Ab such as anti-CD3, mouse anti-CD3 followed by anti-mouse IgG, anti-CD4, anti-CD4A, anti-CD2, anti-CD8, and anti-CD45 did not induce cluster formation. None were inhibitory or stimulatory in the presence of PMA, except for anti-CD3 which enhanced cluster formation by 26 percent. However, anti-LFA-1 beta-chain (mouse monoclonal) completely blocked cluster formation over the range studied (63-1000 ng/mL) for both human and rhesus cells; rat anti-LFA-1 only blocked human cell adhesion. Anti LFA-1 only partially inhibited T cell mitogenesis. These results show that slow cluster formation shares the LFA-1 and phorbol ester requirements of the rapid adhesion of T cells requiring LFA-1 and ICAM-1. However, cluster occurs at a very low phorbol ester concentration, appears more sensitive to staurosporin inhibition, and is not stimulated via the TCR receptor like the rapid adhesion process. We hypothesize that certain neuronal processes, induced by phorbol ester, and which also show a similar protein kinase C activation time course, may share mechanisms in common with cluster formation