Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.690
Filtrar
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 552-556, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38825899

RESUMO

Objective: To investigate the diagnostic value of preferentially expressed antigen in melanoma (PRAME) immunohistochemical staining in differential diagnosis of primary endometrial and endocervical adenocarcinomas. Methods: Eighty-seven cases of endometrial adenocarcinoma and sixty-three cases of cervical adenocarcinoma were collected from May 2018 to November 2023 in the Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School and all the cases were subject to PRAME immunohistochemical staining. The difference of PRAME expression between endometrial and endocervical adenocarcinomas was analyzed. Results: In 87 cases of endometrial adenocarcinoma, patients' age ranged from 35 to 71 years (average 59 years, median 59 years); in 63 cases of cervical adenocarcinoma patients' age ranged from 28 to 80 years (average 49 years, median 47 years). Seventy-eight cases (78/87, 89.7%) of endometrial adenocarcinoma; 2 cases (2/63, 3.2%) of cervical adenocarcinoma showed positive PRAME staining, and both cases of cervical adenocarcinoma were clear cell carcinoma. The sensitivity and specificity of PRAME in distinguishing between endometrial and cervical adenocarcinoma in the cohort were 89.7% and 96.8%, while those in differentiating non-clear cell carcinoma of the uterus from that of the cervix reached up to 91% and 100%, respectively. Conclusions: Immunohistochemical staining for PRAME demonstrates statistically significant differences between endometrial and cervical carcinomas, making it a useful auxiliary diagnostic marker for differentiating cervical and endometrial adenocarcinoma, especially non-clear cell carcinoma.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Neoplasias do Endométrio , Imuno-Histoquímica , Sensibilidade e Especificidade , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Pessoa de Meia-Idade , Diagnóstico Diferencial , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Adulto , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Antígenos de Neoplasias/metabolismo , Idoso de 80 Anos ou mais
2.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838015

RESUMO

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Assuntos
Citoesqueleto , Proteínas com Domínio LIM , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Citoesqueleto/metabolismo , Acetilglucosamina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Glicosilação , Hidrólise , Mutação , Movimento Celular , Antígenos de Neoplasias , Hialuronoglucosaminidase , Histona Acetiltransferases
3.
Biol Pharm Bull ; 47(6): 1119-1122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839363

RESUMO

DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.


Assuntos
Anidrase Carbônica IX , Metilação de DNA , Epigênese Genética , Células Epiteliais , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Células Epiteliais/metabolismo , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regiões Promotoras Genéticas , Células Cultivadas
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 129-134, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836670

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a lethal malignancy with high metastatic probability. Paired box 2 gene product (PAX2) carbonic anhydrase IX were biomolecules closely linked with ccRCC development and outcomes of multiple malignancies. We aim to explore the role of immunohistochemical staining of PAX2 and CAIX to predict ccRCC prognosis after nephrectomy. Surgical specimens of patients who were pathologically diagnosed as ccRCC were reviewed. Expression levels of PAX2 and CAIX were assessed via immunohistochemical staining. Recurrence-free survival (RFS) and overall survival were compared among different phenotypes. Inverse probability of treatment weighting (IPTW) was used for adjustment of confounding factors. 56 patients were included. Patients with PAX2 and CAIX high-expression (the two-high group, n=8) had significantly longer RFS and OS than those of simultaneously down-expression (the two-low group, n=31). Median RFS was 38.4 (95% CI: 32.3-NA) for the two-high group and 14.8 (95% CI: 13.4-39.0) months for the two-low group (P=0.043). IPTW confirmed PAX2 and CAIX co-expression is associated with less recurrence risk HR: 0.39, 95% CI: 0.17-0.92, P=0.031). Co-expression of PAX2 and CAIX is associated better prognosis of ccRCC. We are looking for validation by large cohort studies.


Assuntos
Anidrase Carbônica IX , Carcinoma de Células Renais , Imuno-Histoquímica , Neoplasias Renais , Nefrectomia , Fator de Transcrição PAX2 , Humanos , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX2/genética , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/genética , Masculino , Feminino , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Nefrectomia/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Renais/cirurgia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Neoplasias Renais/genética , Prognóstico , Idoso , Intervalo Livre de Doença , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto , Antígenos de Neoplasias
5.
Cell Death Dis ; 15(6): 397, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844455

RESUMO

Integrin αvß6 holds promise as a therapeutic target for organ fibrosis, yet targeted therapies are hampered by concerns over inflammatory-related side effects. The role of αvß6 in renal inflammation remains unknown, and clarifying this issue is crucial for αvß6-targeted treatment of chronic kidney disease (CKD). Here, we revealed a remarkable positive correlation between overexpressed αvß6 in proximal tubule cells (PTCs) and renal inflammation in CKD patients and mouse models. Notably, knockout of αvß6 not only significantly alleviated renal fibrosis but also reduced inflammatory responses in mice, especially the infiltration of pro-inflammatory macrophages. Furthermore, conditional knockout of αvß6 in PTCs in vivo and co-culture of PTCs with macrophages in vitro showed that depleting αvß6 in PTCs suppressed the migration and pro-inflammatory differentiation of macrophages. Screening of macrophage activators showed that αvß6 in PTCs activates macrophages via secreting IL-34. IL-34 produced by PTCs was significantly diminished by αvß6 silencing, and reintroduction of IL-34 restored macrophage activities, while anti-IL-34 antibody restrained macrophage activities enhanced by αvß6 overexpression. Moreover, RNA-sequencing of PTCs and verification experiments demonstrated that silencing αvß6 in PTCs blocked hypoxia-stimulated IL-34 upregulation and secretion by inhibiting YAP expression, dephosphorylation, and nuclear translocation, which resulted in the activation of Hippo signaling. While application of a YAP agonist effectively recurred IL-34 production by PTCs, enhancing the subsequent macrophage migration and activation. Besides, reduced IL-34 expression and YAP activation were also observed in global or PTCs-specific αvß6-deficient injured kidneys. Collectively, our research elucidates the pro-inflammatory function and YAP/IL-34/macrophage axis-mediated mechanism of αvß6 in renal inflammation, providing a solid rationale for the use of αvß6 inhibition to treat kidney inflammation and fibrosis.


Assuntos
Integrinas , Macrófagos , Camundongos Knockout , Insuficiência Renal Crônica , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Integrinas/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Masculino , Antígenos de Neoplasias/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Modelos Animais de Doenças , Proteínas de Sinalização YAP/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Fibrose
6.
Sci Rep ; 14(1): 13028, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844493

RESUMO

New sulfonamide-triazole-glycoside hybrids derivatives were designed, synthesised, and investigated for anticancer efficacy. The target glycosides' cytotoxic activity was studied with a panel of human cancer cell lines. Sulfonamide-based derivatives, 4, 7 and 9 exhibited promising activity against HepG-2 and MCF-7 (IC50 = 8.39-16.90 µM against HepG-2 and 19.57-21.15 µM against MCF-7) comparing with doxorubicin (IC50 = 13.76 ± 0.45, 17.44 ± 0.46 µM against HepG-2 and MCF-7, rescpectively). To detect the probable action mechanism, the inhibitory activity of these targets was studied against VEGFR-2, carbonic anhydrase isoforms hCA IX and hCA XII. Compoumds 7 and 9 gave favorable potency (IC50 = 1.33, 0.38 µM against VEGFR-2, 66, 40 nM against hCA IX and 7.6, 3.2 nM against hCA XII, respectively), comparing with sorafenib and SLC-0111 (IC50 = 0.43 µM, 53 and 4.8 nM, respectively). Moreover, the docking simulation was assessed to supply better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes that was used for further modification in the anticancer field.


Assuntos
Antineoplásicos , Inibidores da Anidrase Carbônica , Glicosídeos , Simulação de Acoplamento Molecular , Sulfonamidas , Triazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Triazóis/química , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Células MCF-7 , Células Hep G2 , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Relação Estrutura-Atividade
7.
Oncoimmunology ; 13(1): 2362454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846084

RESUMO

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Assuntos
Antígenos CD20 , Imunoterapia , Linfoma de Células B , Rituximab , Tetraspaninas , Humanos , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Antígenos CD20/genética , Rituximab/farmacologia , Rituximab/uso terapêutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem Celular Tumoral , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/genética , Linfoma de Células B/tratamento farmacológico , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Regulação Neoplásica da Expressão Gênica
8.
Front Immunol ; 15: 1394593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835776

RESUMO

Background: Microsatellite instability (MSI) secondary to mismatch repair (MMR) deficiency is characterized by insertions and deletions (indels) in short DNA sequences across the genome. These indels can generate neoantigens, which are ideal targets for precision immune interception. However, current neoantigen databases lack information on neoantigens arising from coding microsatellites. To address this gap, we introduce The MicrOsatellite Neoantigen Discovery Tool (MONET). Method: MONET identifies potential mutated tumor-specific neoantigens (neoAgs) by predicting frameshift mutations in coding microsatellite sequences of the human genome. Then MONET annotates these neoAgs with key features such as binding affinity, stability, expression, frequency, and potential pathogenicity using established algorithms, tools, and public databases. A user-friendly web interface (https://monet.mdanderson.org/) facilitates access to these predictions. Results: MONET predicts over 4 million and 15 million Class I and Class II potential frameshift neoAgs, respectively. Compared to existing databases, MONET demonstrates superior coverage (>85% vs. <25%) using a set of experimentally validated neoAgs. Conclusion: MONET is a freely available, user-friendly web tool that leverages publicly available resources to identify neoAgs derived from microsatellite loci. This systems biology approach empowers researchers in the field of precision immune interception.


Assuntos
Antígenos de Neoplasias , Bases de Dados Genéticas , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Instabilidade de Microssatélites , Mutação da Fase de Leitura , Software , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/imunologia
9.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38828721

RESUMO

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Assuntos
Macrófagos , Fagocitose , Receptores Imunológicos , Humanos , Animais , Camundongos , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Antígenos de Diferenciação/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno CD47/imunologia , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832948

RESUMO

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Mutação , Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Antígeno HLA-A11/genética , Antígeno HLA-A11/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral
11.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
12.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724462

RESUMO

BACKGROUND: Tumor-associated antigens and their derived peptides constitute an opportunity to design off-the-shelf mainline or adjuvant anti-cancer immunotherapies for a broad array of patients. A performant and rational antigen selection pipeline would lay the foundation for immunotherapy trials with the potential to enhance treatment, tremendously benefiting patients suffering from rare, understudied cancers. METHODS: We present an experimentally validated, data-driven computational pipeline that selects and ranks antigens in a multipronged approach. In addition to minimizing the risk of immune-related adverse events by selecting antigens based on their expression profile in tumor biopsies and healthy tissues, we incorporated a network analysis-derived antigen indispensability index based on computational modeling results, and candidate immunogenicity predictions from a machine learning ensemble model relying on peptide physicochemical characteristics. RESULTS: In a model study of uveal melanoma, Human Leukocyte Antigen (HLA) docking simulations and experimental quantification of the peptide-major histocompatibility complex binding affinities confirmed that our approach discriminates between high-binding and low-binding affinity peptides with a performance similar to that of established methodologies. Blinded validation experiments with autologous T-cells yielded peptide stimulation-induced interferon-γ secretion and cytotoxic activity despite high interdonor variability. Dissecting the score contribution of the tested antigens revealed that peptides with the potential to induce cytotoxicity but unsuitable due to potential tissue damage or instability of expression were properly discarded by the computational pipeline. CONCLUSIONS: In this study, we demonstrate the feasibility of the de novo computational selection of antigens with the capacity to induce an anti-tumor immune response and a predicted low risk of tissue damage. On translation to the clinic, our pipeline supports fast turn-around validation, for example, for adoptive T-cell transfer preparations, in both generalized and personalized antigen-directed immunotherapy settings.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Humanos , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Redes Reguladoras de Genes
13.
Front Immunol ; 15: 1389971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799440

RESUMO

Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Linfoma , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Imunoterapia Adotiva/métodos , Linfoma/terapia , Linfoma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Terapia Combinada , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Cancer Biol Ther ; 25(1): 2356820, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38801069

RESUMO

Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.


Assuntos
Anticorpos Biespecíficos , Imunoterapia , Neoplasias da Próstata , Linfócitos T , Humanos , Masculino , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Linfócitos T/imunologia , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Animais
15.
Front Immunol ; 15: 1389173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745666

RESUMO

Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.


Assuntos
Vacinas Anticâncer , Morte Celular Imunogênica , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia
16.
Front Immunol ; 15: 1409021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751430

RESUMO

Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in treating hematological malignancies. However, the widespread adoption of CAR-T cell therapy is hindered by several challenges. These include concerns about the long-term and complex manufacturing process, as well as efficacy factors such as tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor microenvironment. Additionally, safety issues like the risk of secondary cancers post-treatment, on-target off-tumor toxicity, and immune effector responses triggered by CAR-T cells are significant considerations. To address these obstacles, researchers have explored various strategies, including allogeneic universal CAR-T cell development, infusion of non-activated quiescent T cells within a 24-hour period, and in vivo induction of CAR-T cells. This review comprehensively examines the clinical challenges of CAR-T cell therapy and outlines strategies to overcome them, aiming to chart pathways beyond its current Achilles heels.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Antígenos de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
17.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754917

RESUMO

BACKGROUND: Cancer neoantigens arise from protein-altering somatic mutations in tumor and rank among the most promising next-generation immuno-oncology agents when used in combination with immune checkpoint inhibitors. We previously developed a computational framework, REAL-neo, for identification, quality control, and prioritization of both class-I and class-II human leucocyte antigen (HLA)-presented neoantigens resulting from somatic single-nucleotide mutations, small insertions and deletions, and gene fusions. In this study, we developed a new module, SPLICE-neo, to identify neoantigens from aberrant RNA transcripts from two distinct sources: (1) DNA mutations within splice sites and (2) de novo RNA aberrant splicings. METHODS: First, SPLICE-neo was used to profile all DNA splice-site mutations in 11,892 tumors from The Cancer Genome Atlas (TCGA) and identified 11 profiles of splicing donor or acceptor site gains or losses. Transcript isoforms resulting from the top seven most frequent profiles were computed using novel logic models. Second, SPLICE-neo identified de novo RNA splicing events using RNA sequencing reads mapped to novel exon junctions from either single, double, or multiple exon-skipping events. The aberrant transcripts from both sources were then ranked based on isoform expression levels and z-scores assuming that individual aberrant splicing events are rare. Finally, top-ranked novel isoforms were translated into protein, and the resulting neoepitopes were evaluated for neoantigen potential using REAL-neo. The top splicing neoantigen candidates binding to HLA-A*02:01 were validated using in vitro T2 binding assays. RESULTS: We identified abundant splicing neoantigens in four representative TCGA cancers: BRCA, LUAD, LUSC, and LIHC. In addition to their substantial contribution to neoantigen load, several splicing neoantigens were potent tumor antigens with stronger bindings to HLA compared with the positive control of antigens from influenza virus. CONCLUSIONS: SPLICE-neo is the first tool to comprehensively identify and prioritize splicing neoantigens from both DNA splice-site mutations and de novo RNA aberrant splicings. There are two major advances of SPLICE-neo. First, we developed novel logic models that assemble and prioritize full-length aberrant transcripts from DNA splice-site mutations. Second, SPLICE-neo can identify exon-skipping events involving more than two exons, which account for a quarter to one-third of all skipping events.


Assuntos
Antígenos de Neoplasias , Neoplasias , Splicing de RNA , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Neoplasias/imunologia , Neoplasias/genética
18.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766857

RESUMO

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Assuntos
Adipócitos , Antígenos de Neoplasias , Neoplasias da Mama , Anidrase Carbônica IX , Movimento Celular , Neoplasias do Colo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leptina , Comunicação Parácrina , Humanos , Anidrase Carbônica IX/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Antígenos de Neoplasias/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leptina/metabolismo , Linhagem Celular Tumoral , Animais , Obesidade/metabolismo , Meios de Cultivo Condicionados/farmacologia , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos
19.
Cell Immunol ; 399-400: 104827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733699

RESUMO

The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.


Assuntos
Antígenos de Neoplasias , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/imunologia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Epitopos de Linfócito T/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Epitopos/imunologia
20.
Cancer Immunol Immunother ; 73(7): 129, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744688

RESUMO

Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias Pulmonares , Vacinas de Subunidades Antigênicas , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Camundongos , Vacinas Anticâncer/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Humanos , Camundongos Endogâmicos C57BL , Feminino , Imunoterapia/métodos , Linhagem Celular Tumoral , Vacinas de Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...