Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(3): 1382-1399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926485

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) receptors (GABARs) are validated targets of insecticides. Bicyclophosphorothionates are a group of insecticidal compounds that act as noncompetitive antagonists of GABARs. We previously reported that the analogs exhibit various degrees of selectivity for housefly versus rat GABARs, depending on substitutions at the 3- and 4-positions. We here sought to elucidate the unsolved mechanisms of the receptor selectivity using quantitative structure-activity relationship (QSAR), molecular docking, and molecular dynamics approaches. RESULTS: Three-dimensional (3D)-QSAR studies using Topomer comparative molecular field analysis quantitatively demonstrated how the introduction of a small alkyl group at the 3-position of bicyclophosphorothionates contributes to the housefly versus rat GABAR selectivity. To investigate the molecular mechanisms of the selective action, bicyclophosphorothionates were docked into housefly Resistance to dieldrin (RDL) GABAR and rat α1ß2γ2 GABAR homology models built using the published 3D-structures of human GABARs as templates. The results of molecular docking and molecular dynamics simulations revealed that the 2'Ala and 6'Thr residues of the RDL subunit within the channel are the key amino acids for binding to the housefly GABARs, whereas the 2'Ser residue of γ2 subunit plays a crucial role in binding to rat GABARs. CONCLUSION: We revealed the molecular mechanisms underlying the selective antagonistic action of bicyclophosphorothionates on housefly versus rat GABARs. The information presented should help design and develop novel, safe GABAR-targeting insecticides. © 2023 Society of Chemical Industry.


Assuntos
Moscas Domésticas , Inseticidas , Ratos , Animais , Humanos , Receptores de GABA/metabolismo , Inseticidas/química , Moscas Domésticas/metabolismo , Simulação de Acoplamento Molecular , Antagonistas GABAérgicos/química
2.
Pest Manag Sci ; 78(7): 2872-2882, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396824

RESUMO

BACKGROUND: The ionotropic γ-aminobutyric acid (GABA) receptor (iGABAR) is an important target for insecticides and parasiticides. Our previous studies showed that competitive antagonists (CAs) of insect iGABARs have the potential to be used for developing novel insecticides and that the structural modification of gabazine (a representative CA of mammalian iGABARs) could lead to the identification of novel CAs of insect iGABARs. RESULTS: In the present study, a novel series of 1,3-di- and 1,3,5-trisubstituted 1,6-dihydro-6-iminopyridazines (DIPs) was designed using a versatile strategy and synthesized using facile methods. Electrophysiological studies showed that several target DIPs (30 µM) exhibited excellent antagonistic activities against common cutworm and housefly iGABARs consisting of RDL subunits. The IC50 values of 3-(4-methoxyphenyl), 3-(4-trifluoromethoxyphenyl), 3-(4-biphenylylphenyl), 3-(2-naphthyl), 3-(3,4-methylenedioxyphenyl), and 3,5-(4-methoxyphenyl) analogs ranged from 2.2 to 24.8 µM. Additionally, several 1,3-disubstituted DIPs, especially 3-(4-trifluoromethoxyphenyl) and 3-(3,4-methylenedioxyphenyl) analogs, exhibited moderate insecticidal activity against common cutworm larvae, with >60% mortality at a concentration of 100 mg kg-1 . Molecular docking studies showed that the oxygen atom on the three-substituted aromatic ring could form a hydrogen bond with Arg254, which may enhance the activity of these DIPs against housefly iGABARs. CONCLUSION: This systematic study indicated that the presence of a carboxyl side chain shorter by one methylene than that of gabazine at the 1-position of the pyridazine ring is effective for maintaining the stable binding of these DIPs in insect iGABARs. Our study provides important information for the design of novel insect iGABAR CAs. © 2022 Society of Chemical Industry.


Assuntos
Antagonistas GABAérgicos , Insetos , Inseticidas , Piridazinas , Animais , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Inseticidas/química , Simulação de Acoplamento Molecular , Piridazinas/química , Receptores de GABA/metabolismo
3.
Mol Pharmacol ; 101(2): 68-77, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853153

RESUMO

The GABAA receptor is inhibited by the endogenous sulfated steroids pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). It has been proposed in previous work that these steroids act by enhancing desensitization of the receptor. Here, we have investigated the modulatory effects of the steroids on the human α1ß3γ2L GABAA receptor. Using electrophysiology and quantitative model-based data analysis, we show that exposure to the steroid promotes occupancy of a nonconducting state that retains high affinity to the transmitter but whose properties differ from those of the classic, transmitter-induced desensitized state. From the analysis of the inhibitory actions of two combined steroids, we infer that PS and DHEAS act through shared or overlapping binding sites. SIGNIFICANCE STATEMENT: Previous work has proposed that sulfated neurosteroids inhibit the GABAA receptor by enhancing the rate of entry into the desensitized state. This study shows that the inhibitory steroids pregnenolone sulfate and dehydroepiandrosterone sulfate act through a common interaction site by stabilizing a distinct nonconducting state.


Assuntos
Sulfato de Desidroepiandrosterona/farmacologia , Antagonistas GABAérgicos/farmacologia , Pregnenolona/farmacologia , Receptores de GABA-A/metabolismo , Animais , Sulfato de Desidroepiandrosterona/química , Relação Dose-Resposta a Droga , Feminino , Antagonistas GABAérgicos/química , Humanos , Neuroesteroides/química , Neuroesteroides/farmacologia , Pregnenolona/química , Estabilidade Proteica , Receptores de GABA-A/química , Xenopus laevis
4.
J Med Chem ; 64(24): 17795-17812, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908407

RESUMO

The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4ßδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.


Assuntos
Adjuvantes Imunológicos/farmacologia , Alcanos/farmacologia , Antagonistas GABAérgicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Adjuvantes Imunológicos/química , Alcanos/química , Proliferação de Células/efeitos dos fármacos , Antagonistas GABAérgicos/química , Humanos , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
5.
J Med Chem ; 64(10): 7033-7043, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33949869

RESUMO

In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A-E (1-5), from the hypobranchial gland of the mollusk Conus geographus. Compounds 1-5 were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue 6 was used for a detailed pharmacological study. Compound 6 significantly increased the pain threshold in mice in the hot-plate test at 2 and 50 mg/kg. Compound 6 at 500 nM antagonizes type-A γ-aminobutyric acid receptors (GABAARs). In a patch-clamp experiment, out of the six subunit combinations tested, 6 exhibited subtype selectivity, most strongly antagonizing α1ß1γ2 and α4ß3γ2 receptors (IC50 1.5 and 1.0 µM, respectively). Although the structures of 1-6 differ from those of known neuroactive steroids, they are cell-type-selective modulators of GABAARs, expanding the known chemical space of neuroactive steroids.


Assuntos
Analgésicos/química , Caramujo Conus/química , Antagonistas GABAérgicos/química , Neuroesteroides/química , Receptores de GABA/química , Potenciais de Ação/efeitos dos fármacos , Analgésicos/síntese química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Caramujo Conus/metabolismo , Modelos Animais de Doenças , Antagonistas GABAérgicos/isolamento & purificação , Antagonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/uso terapêutico , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Neuroesteroides/isolamento & purificação , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/patologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810317

RESUMO

The proper pharmacological control of pain is a continuous challenge for patients and health care providers. Even the most widely used medications for pain treatment are still ineffective or unsafe for some patients, especially for those who suffer from chronic pain. Substances containing the chromone scaffold have shown a variety of biological activities, including analgesic effects. This work presents for the first time the centrally mediated antinociceptive activity of 5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the 5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to further investigate 5-CK's mechanism of action. Next, based on the results of fingerprints analysis, functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric binding site, with a similar binding profile to that observed for bicuculline and GABA. These results evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation of GABAergic pathways.


Assuntos
Analgésicos/farmacologia , Cromonas/farmacologia , Antagonistas GABAérgicos/farmacologia , Analgésicos/química , Animais , Sítios de Ligação , Cromonas/química , Antagonistas GABAérgicos/química , Camundongos , Simulação de Acoplamento Molecular , Nociceptividade , Ligação Proteica , Receptores de GABA/química , Receptores de GABA/metabolismo
7.
J Agric Food Chem ; 68(50): 15005-15014, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33269911

RESUMO

To control the development of resistance to conventional insecticides acting as γ-aminobutyric acid (GABA) receptor antagonists (e.g., fipronil), new GABAergic 5,5-disubstituted 4,5-dihydropyrazolo[1,5-a]quinazolines were designed via a scaffold-hopping strategy and synthesized with a facile method. Among the 50 target compounds obtained, compounds 5a, 5b, 7a, and 7g showed excellent insecticidal activities against a susceptible strain of Plutella xylostella (LC50 values ranging from 1.03 to 1.44 µg/mL), which were superior to that of fipronil (LC50 = 3.02 µg/mL). Remarkably, the insecticidal activity of compound 5a was 64-fold better than that of fipronil against the field population of fipronil-resistant P. xylostella. Electrophysiological studies against the housefly GABA receptor heterologously expressed in Xenopus oocytes indicated that compound 5a could act as a potent GABA receptor antagonist, and IC50 was calculated to be 32.5 nM. Molecular docking showed that the binding poses of compound 5a with the housefly GABA receptor can be different compared to fipronil, which explains the effectiveness of compound 5a against fipronil-resistant insects. These findings have suggested compound 5a as a lead compound for a novel GABA receptor antagonist controlling field-resistant insects and provided a basis for further design, structural modification, and development of 4,5-dihydropyrazolo[1,5-a]quinazoline motifs as new insecticidal GABA receptor antagonists.


Assuntos
Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Moscas Domésticas/efeitos dos fármacos , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/síntese química , Inseticidas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Animais , Desenho de Fármacos , Moscas Domésticas/química , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Inseticidas/química , Simulação de Acoplamento Molecular , Receptores de GABA/química , Receptores de GABA/metabolismo
8.
J Agric Food Chem ; 68(50): 14768-14780, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274636

RESUMO

Broflanilide, a novel insecticide, is classified as a negative allosteric modulator (NAM) of insect γ-aminobutyric acid (GABA) receptors (GABARs) as desmethyl-broflanilide (DMBF) allosterically inhibits the GABA-induced responses. The G277M mutation of the Drosophila melanogaster GABAR subunit has been reported to abolish the inhibitory activity of DMBF. The binding mode of DMBF in insect GABARs needs to be clarified to understand the underlying mechanism of this mutation and to develop novel, efficient NAMs of insect GABARs. Here, we found that a hydrogen bond formed between DMBF and G277 of the D. melanogaster GABAR model might be the key interaction for the antagonism of DMBF by in silico simulations. The volume increase induced by the G277M mutation blocks the entrance of the binding pocket, making it difficult for DMBF to enter the binding pocket and thereby decreasing its activity. The following virtual screening and bioassay results identified a novel NAM candidate of insect GABARs. Overall, we reported a possible binding mode of DMBF in insect GABARs and proposed the insensitivity mechanism of the G277M mutant GABAR to DMBF using molecular simulations. The identified NAM candidates might provide more alternatives or potentials for the design of GABAR-targeting insecticides.


Assuntos
Benzamidas/química , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Antagonistas GABAérgicos/química , Receptores de GABA/química , Receptores de GABA/metabolismo , Animais , Benzamidas/metabolismo , Benzamidas/farmacologia , Simulação por Computador , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Simulação de Acoplamento Molecular , Receptores de GABA/genética
9.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255851

RESUMO

Herein, we describe novel pentafluorosulfanyl (SF5) group-containing meta-diamide insecticides. For the facile preparation of the SF5-based compounds 4a-d, practical synthetic methods were applied. Among newly synthesized compounds, 3-benzamido-N-(2,6-dimethyl-4-(pentafluoro-λ6-sulfanyl)phenyl)-2-fluorobenzamide 4d showed (i) a high insecticidal activity, (ii) an excellent selectivity to insects, and (iii) good levels of water solubility and log P values. In this study, we demonstrated that the pentafluorosulfanyl moiety could serve as an attractive functionality for the discovery of a new scope of crop-protecting agents.


Assuntos
Técnicas de Química Sintética , Diamida/síntese química , Diamida/farmacologia , Inseticidas/síntese química , Inseticidas/farmacologia , Metais/química , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Estrutura Molecular , Receptores de GABA/química , Relação Estrutura-Atividade
10.
J Agric Food Chem ; 68(17): 4760-4768, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32243147

RESUMO

Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.


Assuntos
Antagonistas GABAérgicos/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Antagonistas GABAérgicos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética , Insetos/metabolismo , Inseticidas/química , Receptores de GABA/genética , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979301

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG expansion mutation in the huntingtin gene. As a result, intranuclear inclusions of mutant huntingtin protein are formed, which damage striatal medium spiny neurons (MSNs). A review of Positron Emission Tomography (PET) studies relating to HD was performed, including clinical and preclinical data. PET is a powerful tool for visualisation of the HD pathology by non-invasive imaging of specific radiopharmaceuticals, which provide a detailed molecular snapshot of complex mechanistic pathways within the brain. Nowadays, radiochemists are equipped with an impressive arsenal of radioligands to accurately recognise particular receptors of interest. These include key biomarkers of HD: adenosine, cannabinoid, dopaminergic and glutamateric receptors, microglial activation, phosphodiesterase 10 A and synaptic vesicle proteins. This review aims to provide a radiochemical picture of the recent developments in the field of HD PET, with significant attention devoted to radiosynthetic routes towards the tracers relevant to this disease.


Assuntos
Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Encéfalo/patologia , Agonistas de Receptores de Canabinoides/metabolismo , Radioisótopos de Carbono/química , Antagonistas de Dopamina/síntese química , Antagonistas de Dopamina/química , Antagonistas de Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/síntese química , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/metabolismo , Radioisótopos de Flúor/química , Antagonistas GABAérgicos/síntese química , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Humanos , Doença de Huntington/patologia , Microglia/metabolismo , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/metabolismo , Antagonistas de Receptores Purinérgicos P1/síntese química , Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/metabolismo , Compostos Radiofarmacêuticos/química
12.
Chembiochem ; 21(10): 1526-1533, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859406

RESUMO

Bicuculline, a valued chemical tool in neurosciences research, is a competitive antagonist of specific GABAA receptors and affects other pentameric ligand-gated ion channels including the glycine, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors. We used a fluorescence-quenching assay and isothermal titration calorimetry to record low-micromolar dissociation constants for N-methylbicuculline interacting with acetylcholine-binding protein and an engineered version called glycine-binding protein (GBP), which provides a surrogate for the heteromeric interface of the extracellular domain of the glycine receptor (GlyR). The 2.4 Šresolution crystal structure of the GBP:N-methylbicuculline complex, sequence and structural alignments reveal similarities and differences between GlyR and the GABAA receptor-bicuculline interactions. N-methylbicuculline displays a similar conformation in different structures, but adopts distinct orientations enforced by interactions and steric blocks with key residues and plasticity in the binding sites. These features explain the promiscuous activity of bicuculline against the principal inhibitory pentameric ligand-gated ion channels in the CNS.


Assuntos
Bicuculina/análogos & derivados , Ativação do Canal Iônico , Receptores de GABA-A/química , Receptores de Glicina/antagonistas & inibidores , Sequência de Aminoácidos , Bicuculina/química , Bicuculina/farmacologia , Sítios de Ligação , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência
13.
Bioorg Med Chem ; 27(2): 416-424, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579800

RESUMO

Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 µM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 µg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.


Assuntos
Carbamatos/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/farmacologia , Isoxazóis/farmacologia , Animais , Carbamatos/síntese química , Carbamatos/química , Domínio Catalítico , Antagonistas GABAérgicos/síntese química , Antagonistas GABAérgicos/química , Moscas Domésticas , Proteínas de Insetos/química , Inseticidas/síntese química , Inseticidas/química , Isoxazóis/síntese química , Isoxazóis/química , Simulação de Acoplamento Molecular , Receptores de GABA/química , Spodoptera , Xenopus/genética
14.
Molecules ; 23(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932138

RESUMO

GABA(A) receptors are ligand-gated ion channels consisting of five subunits from eight subfamilies, each assembled in four hydrophobic transmembrane domains. This pentameric structure not only allows different receptor binding sites, but also various types of ligands, such as orthosteric agonists and antagonists, positive and negative allosteric modulators, as well as second-order modulators and non-competitive channel blockers. A fact, that is also displayed by the variety of chemical structures found for both, synthetic as well as nature-derived GABA(A)-receptor modulators. This review covers the literature for natural GABA(A)-receptor modulators until the end of 2017 and discusses their structure-activity relationship.


Assuntos
Ansiolíticos/química , Anticonvulsivantes/química , Antagonistas GABAérgicos/química , Agonistas de Receptores de GABA-A/química , Subunidades Proteicas/química , Receptores de GABA-A/química , Regulação Alostérica , Sítio Alostérico , Animais , Ansiolíticos/farmacologia , Anticonvulsivantes/farmacologia , Domínio Catalítico , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Cinética , Ligantes , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Relação Estrutura-Atividade
15.
Curr Med Chem ; 24(27): 2935-2945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28606041

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) receptors play a central role in fast inhibitory neurotransmission in insects. Several classes of insecticides targeting insect GABA-gated chloride channels have been developed. The important resistant to dieldrin GABA receptor subunit (RDL) has been used to investigate insecticide sites of action using radioligands, electrophysiology and site-directed mutagenesis. Although this important subunit readily forms robust functional homomeric receptors when expressed, alternative splicing and RNA A-to-I editing can generate diverse forms of the receptor. METHODS: We have reviewed studies on native and recombinant insect GABA-gated chloride channels, their interactions with ligands acting at orthosteric and allosteric sites and their interactions with insecticides. Since some GABA receptor modulators act on L-glutamate-gated chloride channels, some comparisons are included. RESULTS: The actions on GABA-gated chloride channels of polychlorocycloalkanes, cyclodienes, macrocyclic lactones, phenylpyrazoles, isoxazolines, and metadiamides are described and the mechanisms of action of members of these insecticide classes are addressed. Mutations that lead to resistance are discussed as they can be important in developing field diagnostic tests. Toxicity issues relating to insecticides targeting GABA-gated chloride channels are also addressed. An overview of all major insecticide classes targeting insect GABA-gated chloride channels has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native GABA receptors remains unknown and studies to clarify this are needed. Also, the precise sites of action of the recently introduced isoxazolines and meta-diamides will be of interest to pursue.


Assuntos
Inseticidas/metabolismo , Receptores de GABA/metabolismo , Animais , Resistência a Medicamentos/efeitos dos fármacos , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/toxicidade , Humanos , Insetos/efeitos dos fármacos , Inseticidas/química , Inseticidas/toxicidade , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/toxicidade , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/toxicidade , Receptores de GABA/química , Receptores de GABA/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
16.
Bioorg Med Chem ; 24(3): 372-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26361738

RESUMO

Broflanilide is a meta-diamide [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamide] that exhibits high larvicidal activity against Spodoptera litura. It has been suggested that broflanilide is metabolized to desmethyl-broflanilide and that it acts as a noncompetitive resistant-to-dieldrin (RDL) γ-aminobutyric acid (GABA) receptor antagonist. The binding site of desmethyl-broflanilide was demonstrated to be distinct from that of conventional noncompetitive antagonists such as fipronil. It has been proposed that the site of action for desmethyl-broflanilide is close to G336 in the M3 region of the Drosophila RDL GABA receptor. However, although the site of action for desmethyl-broflanilide appears to overlap with that of macrocyclic lactones, different modes of actions have been demonstrated for desmethyl-broflanilide and the macrocyclic lactones. The mechanisms underlying the high selectivity of meta-diamides are also discussed in this review. Broflanilide is expected to become a prominent insecticide because it is effective against pests with resistance to cyclodienes and fipronil.


Assuntos
Benzamidas/farmacologia , Antagonistas GABAérgicos/farmacologia , Inseticidas/farmacologia , Receptores de GABA/metabolismo , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Animais , Benzamidas/química , Relação Dose-Resposta a Droga , Antagonistas GABAérgicos/química , Inseticidas/química , Estrutura Molecular , Relação Estrutura-Atividade
17.
Neurochem Res ; 41(3): 476-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26012366

RESUMO

Analogues of the neurotransmitter GABA containing unsaturated bonds are restricted in the conformations they can attain. This review traces three such analogues from their synthesis to their use as neurochemicals. trans-4-Aminocrotonic acid was the first conformationally restricted analogue to be extensively studied. It acts like GABA across a range of macromolecules from receptors to transporters. It acts similarly to GABA on ionotropic receptors. cis-4-Aminocrotonic acid selectively activates bicuculline-insensitive GABAC receptors. 4-Aminotetrolic acid, containing a triple bond, activates bicuculline-sensitive GABAA receptors. These findings indicate that GABA activates GABAA receptors in extended conformations and GABAC receptors in folded conformations. These and related analogues are important for the molecular modelling of ionotropic GABA receptors and to the development of new agents acting selectively on these receptors.


Assuntos
Aminobutiratos/química , Aminobutiratos/farmacologia , Crotonatos/química , Crotonatos/farmacologia , Animais , Agonistas GABAérgicos/química , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Humanos , Neurotransmissores/química , Neurotransmissores/farmacologia , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Estereoisomerismo , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/farmacologia
18.
J Med Chem ; 58(16): 6336-47, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25856547

RESUMO

Since the discovery of the GABA(B) agonist and muscle relaxant baclofen, there have been substantial advancements in the development of compounds that activate the GABA(B) receptor as agonists or positive allosteric modulators. For the agonists, most of the existing structure-activity data apply to understanding the role of substituents on the backbone of GABA as well as replacing the carboxylic acid and amine groups. In the cases of the positive allosteric modulators, the allosteric binding site(s) and structure-activity relationships are less well-defined; however, multiple classes of molecules have been discovered. The recent report of the X-ray structure of the GABA(B) receptor with bound agonists and antagonists provides new insights for the development of compounds that bind the orthosteric site of this receptor. From a therapeutic perspective, these data have enabled efforts in drug discovery in areas of addiction-related behavior, the treatment of anxiety, and the control of muscle contractility.


Assuntos
Agonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Receptores de GABA-B/efeitos dos fármacos , Animais , Agonistas GABAérgicos/química , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/síntese química , Humanos , Conformação Molecular , Receptores de GABA-B/química , Relação Estrutura-Atividade
19.
Environ Toxicol Chem ; 34(8): 1760-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25760814

RESUMO

Behavior is increasingly reported as a sensitive and early indicator of toxicant stress in aquatic organisms. However, the systematic understanding of behavioral effects and comparisons between effect profiles is hampered because the available studies are limited to few chemicals and differ in the exposure conditions and effect parameters examined. The aims of the present study were 1) to explore behavioral responses of Daphnia magna exposed to different toxicants, 2) to compare behavioral effect profiles with regard to chemical modes of action, and 3) to determine the sensitivity and response time of behavioral parameters in a new multi-cell exposure system named Multi-DaphTrack compared with currently utilized tests. Twelve compounds covering different modes of toxic action were selected to sample a wide range of potential effect profiles. Acute standard immobilization tests and 48 h of behavioral tracking were performed in the customized Multi-DaphTrack system and a single-cell commercialized biological early warning system. Contrasting behavioral profiles were observed for average speed (i.e., intensity, time of effect onset, effect duration), but no distinct behavioral profiles could be drawn from the chemical mode of action. Most compounds tested in the Multi-DaphTrack system induced an early and significant average speed increase at concentrations near or below the 10% effective concentration (48 h) of the acute immobilization test, demonstrating that the Multi-DaphTrack system is fast and sensitive. To conclude, behavior endpoints could be used as an alternative or complement to the current acute standard test or chemical analysis for the predictive evaluation of ecotoxic effects of effluents or water bodies.


Assuntos
Comportamento Animal/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Daphnia/metabolismo , Agonistas GABAérgicos/química , Agonistas GABAérgicos/toxicidade , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/toxicidade , Entorpecentes/química , Entorpecentes/toxicidade , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química
20.
Apoptosis ; 20(3): 383-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25413799

RESUMO

Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside.


Assuntos
Ansiolíticos/farmacologia , Antineoplásicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Indóis/farmacologia , Neuroglia/efeitos dos fármacos , Receptores de GABA/química , Tiocianatos/farmacologia , Ansiolíticos/química , Antineoplásicos/química , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Antagonistas GABAérgicos/química , Expressão Gênica , Humanos , Indóis/química , Cinética , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Ligação Proteica , Receptores de GABA/genética , Receptores de GABA/metabolismo , Tiocianatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...