Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
PLoS One ; 19(6): e0305155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865346

RESUMO

Haemonchus contortus is a blood-feeding gastrointestinal parasite that impacts grazing sheep, causing economic losses in animal production. Due to its anthelmintic resistance, alternative antiparasitic treatments like plant-based anthelmintics are necessary to explore. Artemisia cina (Asteraceae) is a plant whose n-hexane extract and ethyl acetate extract exhibit anthelmintic activity against H. contortus, the n-hexane more active. To discover additional bioactive metabolites, a chemical analysis was performed on ethyl acetate extract, which presented an LC90 of 3.30 mg/mL and allowed the isolation of 11-[(1R,5S,7R,8R,10S,)-1,8-dihydroxy-5,10-dimethyl-4-oxodecahydroazulen-7-yl] acrylic acid. This new sesquiterpene was identified through one and two-dimensional NMR. The compound was named cinic acid and displayed an LC50 of 0.13 (0.11-0.14) mg/mL and LC90 of 0.40 (0.37-0.44) mg/mL, which, compared with ethyl acetate extract larvicidal activity, was 256-fold more active at LC50 and 15.71-fold at LC90. In this study, a new sesquiterpene with larvicidal activity against H. contortus L3 infective larvae was isolated from the ethyl acetate extract of Artemisia cina.


Assuntos
Anti-Helmínticos , Artemisia , Haemonchus , Larva , Extratos Vegetais , Sesquiterpenos , Artemisia/química , Haemonchus/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/química , Larva/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Ovinos , Espectroscopia de Ressonância Magnética
2.
Parasitol Res ; 123(6): 246, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896311

RESUMO

Human toxocariasis is a neglected anthropozoonosis with global distribution. Treatment is based on the administration of anthelmintics; however, their effectiveness at the tissue level is low to moderate, necessitating the discovery of new drug candidates. Several groups of synthetic compounds, including coumarin derivatives, have demonstrated bioactivity against fungi, bacteria, and even parasites, such as Dactylogyrus intermedius, Leishmania major, and Plasmodium falciparum. The aim of this study was to evaluate the effect of ten coumarin-derived compounds against Toxocara canis larvae using in vitro, cytotoxicity, and in silico tests for selecting new drug candidates for preclinical tests aimed at evaluating the treatment of visceral toxocariasis. The compounds were tested in vitro in duplicate at a concentration of 1 mg/mL, and compounds with larvicidal activity were serially diluted to obtain concentrations of 0.5 mg/mL; 0.25 mg/mL; 0.125 mg/mL; and 0.05 mg/mL. The tests were performed in a microculture plate containing 100 T. canis larvae in RPMI-1640 medium. One compound (COU 9) was selected for cytotoxicity analysis using J774.A1 murine macrophages and it was found to be non-cytotoxic at any concentration tested. The in silico analysis was performed using computational models; the compound presented adequate results of oral bioavailability. To confirm the non-viability of the larvae, the contents of the microplate wells of COU 9 were inoculated intraperitoneally (IP) into female Swiss mice at 7-8 weeks of age. This confirmed the larvicidal activity of this compound. These results show that COU 9 exhibited larvicidal activity against T. canis larvae, which, after exposure to the compound, were non-viable, and that COU 9 inhibited infection in a murine model. In addition, COU 9 did not exhibit cytotoxicity and presented adequate bioavailability in silico, similar to albendazole, an anthelmintic, which is the first choice for treatment of human toxocariasis, supporting the potential for future investigations and preclinical tests on COU 9.


Assuntos
Cumarínicos , Larva , Toxocara canis , Animais , Larva/efeitos dos fármacos , Toxocara canis/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Disponibilidade Biológica , Camundongos , Simulação por Computador , Toxocaríase/tratamento farmacológico , Toxocaríase/parasitologia
3.
Exp Parasitol ; 262: 108778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735517

RESUMO

Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.


Assuntos
Anti-Helmínticos , Fezes , Flores , Cromatografia Gasosa-Espectrometria de Massas , Hemoncose , Haemonchus , Nematospiroides dubius , Óleos Voláteis , Contagem de Ovos de Parasitas , Infecções por Strongylida , Thymus (Planta) , Animais , Haemonchus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Camundongos , Nematospiroides dubius/efeitos dos fármacos , Thymus (Planta)/química , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/veterinária , Infecções por Strongylida/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Fezes/parasitologia , Contagem de Ovos de Parasitas/veterinária , Flores/química , Feminino , Ovinos , Concentração Inibidora 50 , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/química , Masculino , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/tratamento farmacológico , Cimenos
4.
Exp Parasitol ; 262: 108777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735520

RESUMO

This study describes the in vitro anthelmintic effect of a hydroalcoholic extract (HA-E) and its fractions from Cyrtocarpa procera fruits against Haemonchus contortus eggs and infective larvae. The HA-E was subjected to bipartition using ethyl acetate, which resulted in an aqueous fraction (Aq-F) and an organic fraction (EtOAc-F). The HA-E and both fractions were tested using the egg hatching inhibition assay (EHIA) and the larval mortality test (LMT). Fractionation of the EtOAc-F was achieved using different chromatographic processes, i.e., open glass column and HPLC analysis. Fractionation of the EtOAc-F gave 18 subfractions (C1R1-C1R18), and those that showed the highest yields (C1R15, C1R16, C1R17 and C1R18) were subjected to anthelmintic assays. The HA-E and the EtOAc-F displayed 100% egg hatching inhibition at 3 and 1 mg/mL, respectively, whereas Aq-F exhibited 92.57% EHI at 3 mg/mL. All subfractions tested showed ovicidal effect. Regarding the larval mortality test, HA-E and EtOAc-F exhibited a larvicidal effect higher than 50% at 50 and 30 mg/mL, respectively. The subfractions that showed the highest larval mortality against H. contortus were C1R15 and C1R17, with larval mortalities of 53.57% and 60.23% at 10 mg/mL, respectively. Chemical analysis of these bioactive subfractions (C1R15 and C1R17) revealed the presence of gallic acid, protocatechuic acid, and ellagic acid. This study shows evidence about the ovicidal and larvicidal properties of C. procera fruits that could make these plant products to be considered as a natural potential anthelmintic agents for controlling haemonchosis in goats and sheep.


Assuntos
Anti-Helmínticos , Frutas , Haemonchus , Larva , Óvulo , Extratos Vegetais , Animais , Haemonchus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Frutas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/química , Óvulo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ovinos , Hemoncose/parasitologia , Hemoncose/veterinária , Doenças dos Ovinos/parasitologia
5.
Vet Parasitol ; 329: 110195, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754156

RESUMO

The nematode Haemonchus contortus is, as a parasite, responsible for most mortality of small ruminants, causing significant economic losses. Numerous plant-derived compounds have exhibited promising anthelmintic activities against this nematode. Notably, the Annona genus stands out for demonstrated anthelmintic effects by extracts from several of its species against different nematodes. This study aimed to assess the effect of an Annona tomentosa fraction, rich in alkaloids, on H. contortus. This fraction, named Alk.F, is derived from the methanolic extract of the plant's stem bark. Chemical characterization of Alk.F was performed by liquid chromatography coupled with mass spectrometry. Among the nine predominant peaks obtained, seven alkaloids were identified: reticuline, reticuline N-oxide, reticuline N-oxide isomer, cyclanoline, asimilobine, tetrahydropalmatine and anonaine. Alk.F inhibited the larval development of H. contortus with an IC50 of 0.026 mg/mL, inhibited larval exsheathment with an IC50 of 0.38 mg/mL, and displayed low hemolytic activity towards sheep erythrocytes. Furthermore, atomic force microscopy revealed that Alk.F altered adhesive forces and the height profile on the surface of H. contortus larvae. In conclusion, A. tomentosa alkaloids alter the cuticle structure of H. contortus, inhibiting larval development and exsheathment, thus offering possibilities for contributing to the development of new anthelmintic drugs.


Assuntos
Alcaloides , Annona , Anti-Helmínticos , Haemonchus , Extratos Vegetais , Animais , Haemonchus/efeitos dos fármacos , Annona/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Alcaloides/farmacologia , Alcaloides/química , Larva/efeitos dos fármacos , Casca de Planta/química , Ovinos , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia
6.
J Pharm Biomed Anal ; 246: 116214, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38781727

RESUMO

Clorsulon is an effective anthelmintic drug substance extensively used in the treatment of parasitic infestations in both cattle and sheep. An in-depth investigation of Clorsulon's degradation products (DPs) was carried out through forced degradation study to comprehend its degradation path. A total of eight degradation products were separated under various stress degradation conditions. Structural elucidation of these DPs was conducted using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS), and their fragmentation patterns were compared to that of the parent compound. Adequate amount of DP-4 was isolated and purified by semi-preparative high-performance liquid chromatography (HPLC) methods. Subsequently, it was examined in detail using both 1D and 2D NMR (nuclear magnetic resonance spectroscopy). Most probable mechanistic pathways for the formation of degradation products under various stress degradation conditions were proposed to better understand the degradation profile. Based on the results of the stress study, Clorsulon drug substance was found to be unstable under photolytic and oxidative conditions. Understanding Clorsulon's degradation pathway is essential for determining shelf-life prediction of the finished product, safety and efficacy assurance, and guiding the development of stable, high-quality formulations.


Assuntos
Anti-Helmínticos , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Anti-Helmínticos/análise , Anti-Helmínticos/química , Espectrometria de Massas/métodos , Oxirredução , Fotólise
7.
Nat Commun ; 15(1): 3367, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719808

RESUMO

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Complexo I de Transporte de Elétrons , Ubiquinona/análogos & derivados , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Caenorhabditis elegans/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/química , Especificidade da Espécie , Quinonas/química , Quinonas/farmacologia , Quinonas/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química
8.
BMC Vet Res ; 20(1): 214, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769544

RESUMO

As an orally effective benzimidazole anthelmintic agent, fenbendazole was not only widely used in agriculture and animal husbandry to prevent and treat parasites, but also shows anti-cancer effects against several types of cancer, exhibits anti-cancer effects in paclitaxel and doxorubicin-resistant cancer cells. However, fenbendazole's poor in water solubility (0.3 µg/mL), limits its clinical applications. Even great efforts were made toward increasing its water solubility, the results were not significant to reach anti-cancer drug delivery requirement (5-10 mg/mL). Through single factor and orthogonal strategy, many complex conditions were designed and used to prepare the complexes, the inclusion complex with methyl-ß-cyclodextrin with 29.2 % of inclusion rate and 89.5% of inclusion yield can increase drug's water solubility to 20.21 mg/mL, which is the best result so far. Its structure was confirmed by differential scanning calorimetry, scanning electron microscopic image, 1D and 2D NMR spectra in D2O. In its in vitro pharmacokinetic study, fenbendazole was 75% released in 15 min., in its in vivo pharmacokinetic study, the bio-availabilities of fenbendazole, its major metabolic anthelmintic agent oxfendazole and its minor metabolic anthelmintic agent oxfendazole were increased to 138%, 149% and 169% respectively, which would allow for fewer drug doses to achieve the same therapeutic effect and suggest that the complex can be used as a potential anticancer agent.


Assuntos
Fenbendazol , Solubilidade , beta-Ciclodextrinas , Fenbendazol/farmacocinética , Fenbendazol/uso terapêutico , Fenbendazol/química , Animais , beta-Ciclodextrinas/química , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Masculino , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/química , Anti-Helmínticos/administração & dosagem
9.
ACS Infect Dis ; 10(5): 1664-1678, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38686397

RESUMO

In this study, we have identified and optimized two lead structures from an in-house screening, with promising results against the parasitic flatworm Schistosoma mansoni and its target protease S. mansoni cathepsin B1 (SmCB1). Our correlation analysis highlighted the significance of physicochemical properties for the compounds' in vitro activities, resulting in a dual approach to optimize the lead structures, regarding both phenotypic effects in S. mansoni newly transformed schistosomula (NTS), adult worms, and SmCB1 inhibition. The optimized compounds from both approaches ("phenotypic" vs "SmCB1" approach) demonstrated improved efficacy against S. mansoni NTS and adult worms, with 2h from the "SmCB1" approach emerging as the most potent compound. 2h displayed nanomolar inhibition of SmCB1 (Ki = 0.050 µM) while maintaining selectivity toward human off-target cathepsins. Additionally, the greatly improved efficacy of compound 2h toward S. mansoni adults (86% dead worms at 10 µM, 68% at 1 µM, 35% at 0.1 µM) demonstrates its potential as a new therapeutic agent for schistosomiasis, underlined by its improved permeability.


Assuntos
Catepsina B , Schistosoma mansoni , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Esquistossomose mansoni/tratamento farmacológico , Desenho de Fármacos , Humanos , Fenótipo , Relação Estrutura-Atividade , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Proteínas de Helminto/antagonistas & inibidores
10.
ChemMedChem ; 19(13): e202400071, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573571

RESUMO

There is currently an urgent need for new anthelmintic agents due to increasing resistance to the limited available drugs. The chalcone scaffold is a privileged structure for developing new drugs and has been shown to exhibit potential antiparasitic properties. We synthesized a series of chalcones via Claisen-Schmidt condensation, introducing a novel recoverable catalyst derived from biochar obtained from the pyrolysis of tree pruning waste. Employing microwave irradiation and a green solvent, this approach demonstrated significantly reduced reaction times and excellent compatibility with various functional groups. The result was the generation of a library of functionalized chalcones, exhibiting exclusive (E)-selectivity and high to excellent yields. The chalcone derivatives were evaluated on the free-living nematode Caenorhabditis elegans. The chalcone scaffold, along with two derivatives incorporating a methoxy substituent in either ring, caused a concentration-dependent decrease of worm motility, revealing potent anthelmintic activity and spastic paralysis not mediated by the nematode levamisole-sensitive nicotinic receptor. The combination of both methoxy groups in the chalcone scaffold resulted in a less potent compound causing worm hypermotility at the short term, indicating a distinct molecular mechanism. Through the identification of promising drug candidates, this work addresses the demand for new anthelmintic drugs while promoting sustainable chemistry.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Chalconas , Animais , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Caenorhabditis elegans/efeitos dos fármacos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/síntese química , Anti-Helmínticos/química , Relação Estrutura-Atividade , Estrutura Molecular , Química Verde , Relação Dose-Resposta a Droga
11.
Vet Parasitol ; 328: 110184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643645

RESUMO

This study applied the in vitro rumen exsheathment test (IVRET) to evaluate the exsheathment kinetics of Haemonchus contortus infective larvae (L3) incubated in ruminal liquor (RL) containing acetone:water extracts of Acacia pennatula (AP), Gymnopodium floribundum (GF), Havardia albicans (HA) or Lysiloma latisiliquum (LL). The role of polyphenols in the biological activity of the evaluated extracts was also determined. Larvae were incubated in RL either alone or added with a different plant extract (AP, GF, HA, or LL) at 1200 µg/mL. Polyethylene glycol (PEG) was added to block polyphenols in each treatment (RL+PEG, AP+PEG, GF+PEG, HA+PEG, and LL+PEG). After incubation times of 0, 1, 3, 6, 9, and 24 h, the exsheathment process was stopped to count the number of ensheathed and exsheathed L3. A Log-Logistic model was used to determine the L3 exsheathment kinetics in the different RL treatments. The inflection point of the respective kinetic curves, which indicates the time to reach 50 % exsheathed L3 (T50), was the only parameter that differed when comparing the exsheathment models (99 % probability of difference). The T50 values obtained for GF, HA, and LL treatments (T50 = 7.11 - 7.58 h) were higher in comparison to the T50 of RL (5.72 h) (≥ 70 % probability of difference). The L3 incubated in RL added with GF, HA, and LL extracts delayed their exsheathment at 3 and 6 h of incubation (28.71 - 48.06 % exsheathment reduction) compared to the RL treatment. The T50 value for AP, AP+PEG, GF+PEG, HA+PEG, and LL+PEG were similar to RL and RL+PEG (T50 = 5.34 - 6.97 h). In conclusion, the IVRET can be used to identify plants with the potential to delay the exsheathment of H. contortus L3 in the ruminal liquor. The acetone:water extracts of G. floribundum, H. albicans, and L. latisiliquum delayed the T50 of H. contortus exsheathment, which was evident at 3 and 6 h of incubation in ruminal liquor. The observed exsheathment delay was attributed to the polyphenol content of the extracts.


Assuntos
Haemonchus , Larva , Extratos Vegetais , Rúmen , Animais , Haemonchus/efeitos dos fármacos , Rúmen/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Hemoncose/veterinária , Hemoncose/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química
12.
Exp Parasitol ; 261: 108768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679124

RESUMO

This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.


Assuntos
Anti-Helmínticos , Catalase , Gerbillinae , Glutationa , Hemoncose , Haemonchus , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Superóxido Dismutase , Animais , Haemonchus/efeitos dos fármacos , Folhas de Planta/química , Estresse Oxidativo/efeitos dos fármacos , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Catalase/análise , Glutationa/metabolismo , Glutationa/análise , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Contagem de Ovos de Parasitas/veterinária , Biomarcadores , Glutationa Peroxidase/metabolismo , Feminino
13.
Acta Trop ; 255: 107214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663537

RESUMO

Toxocara canis can produce the "larva migrans" syndrome in humans, and in puppies, it can cause severe digestive disorders. The most used treatments are based on anthelmintics, although there are reports of anthelmintic (AH) resistance. The Yucatan Peninsula has a great variety of plant species whose AH properties are still unknown. The objective of this study was to evaluate the in vitro AH activity of ethanolic (EE), methanolic (ME) and aqueous (AE) extracts from the leaves of five native plant species of the Yucatan Peninsula on T. canis eggs of dogs from Merida, Yucatan. As part of a screening, the EE of the plants Alseis yucatanensis, Calea jamaicensis, Cameraria latifolia, Macrocepis diademata, and Parathesis cubana were evaluated at doses of 2400 and 3600 µg/ml. The EE and AE of A. yucatanensis and M. diademata presented high percentages (≥ 91.3%) of inhibition of the larval development of T. canis after six days of exposure. The lowest LC50 and LC99 was presented by the ME from A. yucatanensis (255.5 and 629.06 µg/ml, respectively) and the ME from M. diademata (222.4 and 636.5 µg/ml, respectively), and the AE from A. yucatanenesis (LC50 of 535.9 µg/ml). Chemical profiling of the most potent AH extract (Alseis yucatanensis) was carried out by LC-UV-HRMS. Data from the ME and AE from this plant indicated the presence of the known glucosylngoumiensine, kaempferol 3,7-diglucosyde, uvaol, linoleic acid and linolenic acid together with unknown alkaloids. The EE, ME and AE from leaves of M. diademata and A. yucatanensis could be developed as natural alternatives to control T. canis.


Assuntos
Anti-Helmínticos , Extratos Vegetais , Folhas de Planta , Toxocara canis , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Toxocara canis/efeitos dos fármacos , Cães , Folhas de Planta/química , México , Larva/efeitos dos fármacos
14.
Curr Top Med Chem ; 24(5): 437-485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311918

RESUMO

Heterocyclic molecules have fascinated a massive interest in medicinal chemistry. They are heterocyclic compounds that have gained significance due to their diverse variety of pharmacological activities. Benzimidazole is a heterocyclic compound consisting of benzene and imidazole rings. The ease of synthesis and the structural versatility of benzimidazole make it a promising scaffold for drug development. Many biological actions of benzimidazole derivatives have been well documented, including antibacterial, antiviral, anticancer, anti-inflammatory, antitubercular, and anthelmintic properties. The mechanism of action of benzimidazole derivatives varies with their chemical structure and target enzyme. This review has explored numerous methods for producing benzimidazole derivatives as well as a broad range of pharmacological activities. SAR investigations are also discussed in this review as they provide crucial details regarding the essential structural qualities that benzimidazole derivatives must have in order to be biologically active, which could aid in the rational design of new drug candidates. Benzimidazole scaffold is an exclusive structure in drug design and discovery. Many new pharmaceutical drugs containing benzimidazole are anticipated to be available within the next ten years as a result of the extensive therapeutic applications of benzimidazole and its derivatives. This review inspired many researchers to develop more biologically active compounds bearing benzimidazole, expanding the scope of finding a remedy for other diseases. From this study, we concluded that 2-substituted benzimidazole was considered more extensively by researchers.


Assuntos
Benzimidazóis , Desenvolvimento de Medicamentos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química
15.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134663

RESUMO

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Assuntos
Anti-Helmínticos , Nematoides , Quinolinas , Animais , Humanos , Caenorhabditis elegans , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Relação Estrutura-Atividade
16.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579827

RESUMO

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Assuntos
Anti-Helmínticos , Praziquantel , Animais , Camundongos , Praziquantel/farmacologia , Praziquantel/química , Niclosamida/farmacologia , Antiparasitários , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Schistosoma mansoni
17.
Nat Prod Rep ; 40(11): 1754-1808, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555325

RESUMO

Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.


Assuntos
Anti-Helmínticos , Produtos Biológicos , Doenças do Gato , Doenças do Cão , Helmintos , Nematoides , Animais , Bovinos , Ovinos , Cavalos , Cães , Gatos , Suínos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças do Gato/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico
18.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446937

RESUMO

Plant tannins are known for their anthelmintic and antiparasitic activities and have been increasingly studied to battle the ever-growing problem of anthelmintic resistance. While tannins have been shown to exhibit these activities on their own, one approach would be to use them as complementary nutrients alongside commercial anthelmintics. So far, research on the interactions between tannins and anthelmintics is limited, and few studies have reported both synergistic and antagonistic effects depending on the type of tannin and the method used. These interactions could either strengthen or weaken the efficacy of commercial anthelmintics, especially if tannin-rich diets are combined with anthelmintics used as oral drenches. To study these interactions, a series of hydrolysable tannins (HTs) was selected, and their direct interactions with thiabendazole (TBZ) were evaluated by isothermal titration calorimetry (ITC), which allowed the detection of the exothermic interaction but also the roles and significances of different structural features of HTs in these interactions. Our results show that HTs can have a direct interaction with the benzimidazole anthelmintic TBZ and that the interaction is strengthened by increasing the number of free galloyl groups and the overall molecular flexibility of HTs.


Assuntos
Anti-Helmínticos , Taninos , Taninos/farmacologia , Taninos/química , Anti-Helmínticos/química , Extratos Vegetais/química , Taninos Hidrolisáveis , Tiabendazol , Calorimetria/métodos
19.
Vet Parasitol ; 320: 109971, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331171

RESUMO

Acacia bilimekii is a plant with a high content of protein, fibre, and condensed tannins, making it an excellent feed for small ruminants with anthelmintic potential. This study aimed to evaluate the ovicidal activity of a hydroalcoholic extract (Ab-HA) and fractions from A. bilimekii aerial parts on Haemonchus contortus. The ovicidal activity of the Ab-HA extract and its fractions obtained by chromatographic fractionation were evaluated through the egg hatching inhibition (EHI) test. The results showed that the Ab-HA extract had 91% EHI at 20,000 µg/mL with a mean effective concentration (EC50) of 9260 µg/mL. After liquid-liquid fractionation of Ab-HA extract, the aqueous fraction (Ab-Aq) did not show ovicidal activity, whereas the organic fraction (Ab-EtOAc) showed a better EHI than the Ab-HA extract (98.9% at 2500 µg/mL). Then, the chemical fractionation of Ab-EtOAc allowed obtaining six bioactive fractions (AbR12-17) with an EHI greater than 90% at 1500 µg/mL. The best treatment was AbR15 (98.7% EHI at 750 µg/mL). Chemical analysis by HPLC-PDA of AbR15 indicated the presence of p-coumaric acid and the flavone luteolin as major compounds. Additionally, the commercial p-coumaric acid standard was evaluated in the EHI assay and showed an EHI of 97% at 62.5 µg/mL. Meanwhile, the confocal laser scanning microscopy analysis demonstrated a colocalization effect between p-coumaric acid and the H. contortus embryonated eggs. These results indicate that due to their major chemical compounds (including p-coumaric acid), the aerial parts of the plant A. bilimekii, could be considered as natural potential tool for controlling haemonchosis in small ruminants.


Assuntos
Acacia , Anti-Helmínticos , Haemonchus , Animais , Acacia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óvulo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Larva , Componentes Aéreos da Planta
20.
J Ethnopharmacol ; 312: 116453, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019160

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrointestinal nematodes (GIN) control in small ruminants has relied on the systematic use of synthetic anthelmintics (AH), their effectiveness has been progressively decreasing due to the rise and diffusion of anthelmintic resistances. The most prevalent genera affecting small ruminants were Haemonchus spp., and Trichostrongylus spp. The investigation of new anthelmintics in plants is a highly studied option, especially when it is linked to ethnobotanical knowledge and phenolic compounds. THE AIMS OF OUR STUDY: Four medicinal plants mentioned in traditional medicine were selected to evaluate their anthelmintic proprieties at different stages of the life cycle of GIN, namely: Kyllinga odorata Valh., Cassia occidentalis L., Artemisia absinthium L, and Verbena litoralis Kunth and to explore the role of polyphenols in the AH activity. MATERIALS AND METHODS: To evaluate the anthelmintic activity in this study, two models of GIN species, namely Haemonchus contortus (Hc) and Trichostrongylus colubriformis (Tc) were selected and tested on two in vitro assays: 1) Larval Exsheathment Inhibition Assay (LEIA) and, 2) Egg Hatch Assay (EHA). To explore the role of tannins and polyphenols in AH activity by comparing the effects of LEIA and EHA with or without polyvinylpolypyrrolidone (PVPP) and to characterize the phytochemical composition of the most active plants using ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). RESULTS: C. occidentalis exhibited the highest activity on LEIA (EC50 = 250.42-41.80 µg/mL) and A. absinthium on egg hatching processes (EC50 = 121.70-137.34 µg/mL) in both species of GIN. The inhibition in the development of eggs was from 67.70% to 96.36% on H. contortus, and from 78.87% to 99.65% on T. colubriformis. At the maximal dose, Additionally, it was observed that the AH on eggs varies according to the GIN species: on H. contortus the extracts tested blocked the formation of larvae Ovicidal Effect (% higher OE) and on T. colubriformis they blocked the appearance of L1 larvae, Larvae Failing Eclosion (% higher LFE). After PVPP, a reduction in AH activity on LEIA and EHA was noted, especially with C. occidentalis (87.20-67.00% of larvae exsheathment, (p < 0.05) and 40.51-24.96% of egg hatching, (p > 0.05) of both parasite species. Nine putative features were identified using HRMS and MS/MS after addition of PVPP. CONCLUSIONS: The present study demonstrated that C. occidentalis, A. absinthium, and K. odorata, which parts have been traditionally used as medicinal plants are a valuable source of active compounds with anthelmintic activity. The medicinal use of these plants against GIN parasites was proven by in vitro analysis. Therefore exploration of the secondary metabolites of these plant extracts and testing of isolated fractions of active compounds under in vivo experiments are planned and represent a specific challenge for alternative drug research. Regarding the PVPP, in this study we hypotheses about the standard doses it was not able to completely absorb the polyphenols of extracts of K. odorata, C. occidentalis, and A. absinthium, which would lead to more studies to evaluate the role of this product in the absorption of phenolic compounds.


Assuntos
Anti-Helmínticos , Haemonchus , Plantas Medicinais , Animais , Polifenóis/farmacologia , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Fenóis/farmacologia , Ruminantes/parasitologia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...