Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.908
Filtrar
1.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893366

RESUMO

The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.


Assuntos
Peptidomiméticos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptidomiméticos/síntese química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
2.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893406

RESUMO

A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively.


Assuntos
Anti-Infecciosos , Cucurbita , Lectinas de Plantas , Cucurbita/química , Animais , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Camundongos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia
3.
Sci Rep ; 14(1): 12997, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844768

RESUMO

Herbal medicine combined with nanoparticles has caught much interest in clinical dental practice, yet the incorporation of chitosan with Salvadora persica (S. persica) extract as an oral care product has not been explored. The aim of this study was to evaluate the combined effectiveness of Salvadora persica(S. persica) and Chitosan nanoparticles (ChNPs) against oropharyngeal microorganisms. Agar well diffusion, minimum inhibitory concentration, and minimal lethal concentration assays were used to assess the antimicrobial activity of different concentrations of ethanolic extracts of S. persica and ChNPs against selected fungal strains, Gram-positive, and Gram-negative bacteria. A mixture of 10% S. persica and 0.5% ChNPs was prepared (SChNPs) and its synergistic effect against the tested microbes was evaluated. Furthermore, the strain that was considered most sensitive was subjected to a 24-h treatment with SChNPs mixture; and examined using SEM, FT-IR and GC-MS analysis. S. persica extract and ChNPs exhibited concentration-dependent antimicrobial activities against all tested strains. S. persica extract and ChNPs at 10% were most effective against S. pneumoni, K. pneumoni, and C. albicans. SEM images confirmed the synergistic effect of the SChNPs mixture, revealing S. pneumonia cells with increased irregularity and higher cell lysis compared to the individual solutions. GC-MS and FT-IR analysis of SChNPs showed many active antimicrobial phytocompounds and some additional peaks, respectively. The synergy of the mixture of SChNPs in the form of mouth-rinsing solutions can be a promising approach for the control of oropharyngeal microbes that are implicated in viral secondary bacterial infections.


Assuntos
Quitosana , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Nanopartículas , Extratos Vegetais , Salvadoraceae , Quitosana/farmacologia , Quitosana/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Salvadoraceae/química , Orofaringe/microbiologia , Orofaringe/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
BMC Microbiol ; 24(1): 193, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831400

RESUMO

INTRODUCTION: Optimal exploitation of the huge amounts of agro-industrial residuals that are produced annually, which endangers the ecosystem and ultimately contributes to climate change, is one of the solutions available to produce value-added compounds. AIM AND OBJECTIVES: This study aimed at the economic production and optimization of surfactin. Therefore, the production was carried out by the microbial conversion of Potato Peel Waste (PPW) and Frying Oil Waste (FOW) utilizing locally isolated Bacillus halotolerans. Also, investigating its potential application as an antimicrobial agent towards some pathogenic strains. RESULTS: Screening the bacterial isolates for surfactin production revealed that the strain with the highest yield (49 g/100 g substrate) and efficient oil displacement activity was genetically identified as B. halotolerans. The production process was then optimized utilizing Central Composite Design (CCD) resulting in the amelioration of yield by 11.4% (from 49 to 55.3 g/100 g substrate) and surface tension (ST) by 8.3% (from 36 to 33 mN/m) with a constant level of the critical micelle concentration (CMC) at 125 mg/L. Moreover, the physiochemical characterization studies of the produced surfactin by FTIR, 1H NMR, and LC-MS/MS proved the existence of a cyclic lipopeptide (surfactin). The investigations further showed a strong emulsification affinity for soybean and motor oil (E24 = 50%), as well as the ability to maintain the emulsion stable over a wide pH (4-10) and temperature (10-100 °C) range. Interestingly, surfactin had a broad-spectrum range of inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, klebsiella pneumonia, and Candida albicans. CONCLUSION: Subsequently, the screening of the isolates and the utilized food-processing wastes along with the extraction technique resulted in a high yield of surfactin characterized by acceptable ST and CMC levels. However, optimization of the cultural conditions to improve the activity and productivity was achieved using Factor-At-A-Time (OFAT) and Central Composite Design (CCD). In contrast, surface activity recorded a maximum level of (33 mN/n) and productivity of 55.3 g/100 g substrate. The optimized surfactin had also the ability to maintain the stability of emulsions over a wide range of pH and temperature. Otherwise, the obtained results proved the promising efficiency of the surfactin against bacterial and fungal pathogens.


Assuntos
Bacillus , Resíduos Industriais , Lipopeptídeos , Solanum tuberosum , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Solanum tuberosum/microbiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/biossíntese , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Agricultura/métodos
5.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891769

RESUMO

Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.


Assuntos
Antioxidantes , Flavonóis , Glicosídeos , Extratos Vegetais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Flavonóis/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Animais
6.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891787

RESUMO

Antimicrobial resistance is a menace to public health on a global scale. In this regard, nanomaterials exhibiting antimicrobial properties represent a promising solution. Both metal and metal oxide nanomaterials are suitable candidates, even though their mechanisms of action vary. Multiple antimicrobial mechanisms can occur simultaneously or independently; this includes either direct contact with the pathogens, nanomaterial uptake, oxidative stress, ion release, or any of their combinations. However, due to their specific properties and more particularly fast settling, existing methods to study the antimicrobial properties of nanoparticles have not been specifically adapted in some cases. The development of methodologies that can assess the antimicrobial properties of metallic nanomaterials accurately is necessary. A cost-effective methodology with a straightforward set-up that enables the easy and quick assessment of the antimicrobial properties of metal nanoparticles with high accuracy has been developed. The methodology is also capable of confirming whether the killing mechanism involves ionic diffusion. Finally, Aloe Vera gel showed good properties for use as a medium for the development of antimicrobial ointment.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Nanocompostos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Preparações de Plantas/farmacologia , Preparações de Plantas/química , Aloe/química
7.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892071

RESUMO

Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.


Assuntos
Dendrímeros , Escherichia coli , Testes de Sensibilidade Microbiana , Triazinas , Dendrímeros/química , Dendrímeros/síntese química , Dendrímeros/farmacologia , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química
8.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892121

RESUMO

Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.


Assuntos
Canabidiol , Hidrogéis , Pele , Hidrogéis/química , Hidrogéis/farmacologia , Canabidiol/farmacologia , Canabidiol/química , Pele/efeitos dos fármacos , Pele/metabolismo , Humanos , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Regeneração/efeitos dos fármacos , Polímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Queratinócitos/efeitos dos fármacos , Células HaCaT , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
9.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892137

RESUMO

In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites.


Assuntos
Hericium , Humanos , Hericium/química , Hericium/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Metabolismo Secundário
10.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892267

RESUMO

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Assuntos
Embalagem de Alimentos , Polietileno , Solanum lycopersicum , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Embalagem de Alimentos/métodos , Polietileno/química , Solanum lycopersicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos
11.
Carbohydr Polym ; 341: 122321, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876723

RESUMO

Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.


Assuntos
Antibacterianos , Biofilmes , Amido , Taninos , Resistência à Tração , Amido/química , Taninos/química , Taninos/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Polifenóis
12.
PLoS One ; 19(6): e0299372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885237

RESUMO

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Assuntos
Hidroxibenzoatos , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Ácido Gálico/química , Ácido Gálico/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia
13.
Sci Rep ; 14(1): 13201, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851845

RESUMO

Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.


Assuntos
Anti-Infecciosos , Antineoplásicos , Tensoativos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Tensoativos/química , Tensoativos/síntese química , Tensoativos/farmacologia , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Linhagem Celular Tumoral , Aminoácidos/química
14.
Phys Chem Chem Phys ; 26(23): 16529-16539, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828872

RESUMO

This study reports on the effects of conformationally controlled amphiphilicity of antimicrobial peptides (AMPs) on their ability to coat TiO2 nanoparticles (NPs) and boost the photocatalytic antimicrobial effects of such NPs. For this, TiO2 NPs were combined with AMP EFK17 (EFKRIVQRIKDFLRNLV), displaying a disordered conformation in aqueous solution but helix formation on interaction with bacterial membranes. The membrane-bound helix is amphiphilic, with all polar and charged amino acid residues located at one side and all non-polar and hydrophobic residues on the other. In contrast, the d-enantiomer variant EFK17-d (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV) is unable to form the amphiphilic helix on bacterial membrane interaction, whereas the W-residues in EFK17-W (EWKRWVQRWKDFLRNLV) boost hydrophobic interactions of the amphiphilic helix. Circular dichroism results showed the effects displayed for the free peptide, to also be present for peptide-coated TiO2 NPs, causing peptide binding to decrease in the order EFK17-W > EFK17 > EFK17-d. Notably, the formation of reactive oxygen species (ROS) by the TiO2 NPs was essentially unaffected by the presence of peptide coating, for all the peptides investigated, and the coatings stabilized over hours of UV exposure. Photocatalytic membrane degradation from TiO2 NPs coated with EFK17-W and EFK17 was promoted for bacteria-like model bilayers containing anionic phosphatidylglycerol but suppressed in mammalian-like bilayers formed by zwitterionic phosphatidylcholine and cholesterol. Structural aspects of these effects were further investigated by neutron reflectometry with clear variations observed between the bacteria- and mammalian-like model bilayers for the three peptides. Mirroring these results in bacteria-like model membranes, combining TiO2 NPs with EFK17-W and EFK17, but not with non-adsorbing EFK17-d, resulted in boosted antimicrobial effects of the resulting cationic composite NPs already in darkness, effects enhanced further on UV illumination.


Assuntos
Titânio , Titânio/química , Titânio/farmacologia , Catálise , Nanopartículas/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
15.
Bioorg Chem ; 149: 107524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850782

RESUMO

Proteins and peptides, as polypeptide chains, have usually got unique conformational structures for effective biological activity. Antimicrobial peptides (AMPs) are a group of bioactive peptides, which have been increasingly studied during recent years for their promising antibacterial, antifungal, antiviral and anti-inflammatory activity, as well as, other esteemed bioactivities. Numerous AMPs have been separated from a wide range of natural resources, or produced in vitro through chemical synthesis and recombinant protein expression. Natural AMPs have had limited clinical application due to several drawbacks, such as their short half-life due to protease degradation, lack of activity at physiological salt concentrations, toxicity to mammalian cells, and the absence of suitable methods of delivery for the AMPs that are targeted and sustained. The creation of synthetic analogs of AMPs would both avoid the drawbacks of the natural analogs and maintain or even increase the antimicrobial effectiveness. The structure-activity relationship of discovered AMPs or their derivatives facilitates the development of synthetic AMPs. This review discovered that the relationship between the activity of AMPs and their positive net charge, hydrophobicity, and amino acid sequence and the relationship between AMPs' function and other features like their topology, glycosylation, and halogenation.


Assuntos
Peptídeos Antimicrobianos , Humanos , Relação Estrutura-Atividade , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/síntese química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Estrutura Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Bactérias/efeitos dos fármacos
16.
Sci Rep ; 14(1): 13693, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871956

RESUMO

The present study utilized response surface methodology (RSM) to investigate the impact of varying concentrations of carboxymethyl cellulose (CMC: 0.75-1.75 wt%), Commiphora mukul polysaccharide (CMP: 0-1 wt%), and Chitosan Nanofiber (CHNF: 0-1 wt%) on the physical and antimicrobial characteristics of nanocomposite films based on CMC. The optimization process aimed to enhance ultimate tensile strength (UTS), strain at break (SAB), and antibacterial activity, while minimizing water vapor permeability (WVP), solubility, swelling, moisture content, opacity, and total color difference (ΔE). The results revealed that both CMP and CHNF had a positive influence on reducing moisture content, WVP, and increasing UTS. However, higher concentrations of CMP and CHNF had a divergent effect on SAB, ΔE, and swelling. The incorporation of CMP led to increased opacity and solubility, while the inclusion of CHNF resulted in decreased opacity and solubility. Notably, only CHNF addition significantly improved the antibacterial properties of the films. By applying the optimization procedure utilizing RSM, the formulation containing CMC (1.5 wt%), CMP (0.25 wt%), and CHNF (0.75 wt%) demonstrated superior physical, mechanical, and antibacterial properties in the biodegradable film matrix. These findings highlight the potential of utilizing these components to enhance the performance of CMC-based nanocomposite films.


Assuntos
Carboximetilcelulose Sódica , Quitosana , Nanocompostos , Nanofibras , Resistência à Tração , Quitosana/química , Carboximetilcelulose Sódica/química , Nanofibras/química , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Gomas Vegetais/química , Polissacarídeos/química , Solubilidade , Commiphora/química , Permeabilidade , Vapor , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
17.
Int J Biol Macromol ; 272(Pt 1): 132723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825262

RESUMO

Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.


Assuntos
Materiais Biocompatíveis , Quitosana , Géis , Quitosana/química , Géis/química , Materiais Biocompatíveis/química , Humanos , Sistemas de Liberação de Medicamentos , Engenharia Tecidual/métodos , Animais , Cicatrização/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
18.
Int J Biol Macromol ; 272(Pt 1): 132813, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825276

RESUMO

Bionanocomposite films of three biopolymers including chitosan, gelatin, and pectin incorporated with rosemary essential oil (REO) were developed and characterized in terms of their physical, structural, mechanical, morphological, antioxidant, and antimicrobial properties. Incorporation of REO showed an increased hydrophobic nature thus, improved water vapor transmission rate (WVTR), tensile strength (TS), elongation-at-break (EAB), and thermal stability significantly (P ≤ 0.05) as compared to the control films. The addition of REO leads to more opaque films with relatively increased microstructural heterogeneity, resulting in an increase in film opacity. Fourier transform infrared spectroscopy (FTIR) and particle size revealed that REO incorporation exhibits high physicochemical stability in chitosan, gelatin, and pectin bionanocomposite films. Incorporation of REO exhibited the highest inhibitory activity against the tested pathogenic strains (Bacillus subtilis and Escherichia coli). Furthermore, the addition of REO increased the inhibitory activity of films against ABTS and DPPH free radicals. Therefore, chitosan, gelatin, and pectin-based bionanocomposite films containing REO as food packaging could act as a potential barrier to extending food shelf life.


Assuntos
Antioxidantes , Quitosana , Embalagem de Alimentos , Gelatina , Nanocompostos , Óleos Voláteis , Pectinas , Quitosana/química , Pectinas/química , Gelatina/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Nanocompostos/química , Antioxidantes/química , Antioxidantes/farmacologia , Embalagem de Alimentos/métodos , Resistência à Tração , Vapor , Bacillus subtilis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Biol Macromol ; 272(Pt 1): 132834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838885

RESUMO

The development of novel packaging materials with antimicrobial properties is crucial in preventing the microbial-induced spoilage of fruits, vegetables, and foodborne illnesses. In this study, homojunction g-C3N4 (HCN) photocatalysts with excellent photocatalytic performance were incorporated into a matrix consisting of pullulan/chitosan (Pul/CS). These photocatalysts were then electrostatically spun onto polylactic acid (PLA) films to fabricate PLA@Pul/CS/HCN nanofibrous composite films. The design of the bilayer films aimed to combine the physical properties of PLA film with the excellent antibacterial properties of nanofiber films, thereby achieving synergistic advantages. The incorporation of the HCN photocatalysts resulted in enhanced hydrophobicity, barrier function, and mechanical properties of the composite films. Under visible light irradiation, the PLA@Pul/CS/HCN films exhibited approximately 3.43 log and 3.11 log reductions of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), respectively, within 2 h. The excellent antimicrobial performance could be attributed to the synergistic effect of CS and the release of reactive oxygen species (ROS) from HCN. Moreover, the strawberries packaged in the PLA@Pul/CS/HCN film demonstrated diminished quality degradation and a prolonged shelf life following visible light irradiation treatment. This study will provide new insights into the exploration of safe and efficient antimicrobial food packaging.


Assuntos
Quitosana , Embalagem de Alimentos , Frutas , Glucanos , Luz , Poliésteres , Glucanos/química , Glucanos/farmacologia , Poliésteres/química , Quitosana/química , Quitosana/farmacologia , Frutas/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fragaria/microbiologia , Nanofibras/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Grafite , Compostos de Nitrogênio
20.
ACS Appl Mater Interfaces ; 16(23): 29867-29875, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38825754

RESUMO

Antimicrobial surfaces limit the spread of infectious diseases. To date, there is no antimicrobial coating that has widespread use because of short-lived and limited spectrum efficacy, poor resistance to organic material, and/or cost. Here, we present a paint based on waterborne latex particles that is supramolecularly associated with quaternary ammonium compounds (QACs). The optimal supramolecular pairing was first determined by immobilizing selected ions on self-assembled monolayers exposing different groups. The QAC surface loading density was then increased by using polymer brushes. These concepts were adopted to develop inexpensive paints to be applied on many different surfaces. The paint could be employed for healthcare and food production applications. Its slow release of QAC allows for long-lasting antimicrobial action, even in the presence of organic material. Its efficacy lasts for more than 90 washes, and importantly, once lost, it can readily be restored by spraying an aqueous solution of the QAC. We mainly tested cetyltrimethylammonium as QAC as it is already used in consumer care products. Our antimicrobial paint is broad spectrum as it showed excellent antimicrobial efficiency against four bacteria and four viruses.


Assuntos
Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Pintura , Propriedades de Superfície , Látex/química , Látex/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...