Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.843
Filtrar
1.
Arch Microbiol ; 206(10): 396, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249533

RESUMO

Bacteria threaten human and animal health, and standard antibiotics no longer effective. Antibiotic-resistant microorganisms can make infection treatment challenging and perhaps fail. Investigating the attributes of cyclotide, a peptide with promising antibacterial properties that holds great potential in the field of antibiotic research. The structure of these cyclic peptides involves six conserved cysteine residues that form three disulfide bonds, resulting in a cyclic cystine knot (CCK). This feature guarantees their durability when exposed to changes in temperature, chemicals, and enzymatic degradation. The two cyclotides, cycloviolacin O17 and mra30, were obtained from Viola dalatensis Gadnep through a series of techniques including the use of a 50% acetonitrile/49% miliQ water/1% formic acid solution for extraction, ammonium salt precipitation, RP-HPLC purification and sequence identification by LC-MS/MS. These cyclotides exhibit antibacterial effects on specific strains of bacteria like Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa at a concentration of 0.2 mg/mL, leading to inhibition zones ranging from 10 to 14 mm. In addition, the disulfide bonds play a crucial role in the antibacterial function of cyclotides. Disrupting the disulfide bonds through ankylation reaction results in the loss of antibacterial properties in the cyclotides (cyO17 and mra30). The minimum inhibitory concentration (MIC) values of mra30 and cyO17 are significantly low, ranging from 0.1 to 0.6 µM. These values are approximately three times lower than the MIC values observed in salt precipitation samples.


Assuntos
Antibacterianos , Ciclotídeos , Testes de Sensibilidade Microbiana , Viola , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Ciclotídeos/química , Ciclotídeos/farmacologia , Ciclotídeos/isolamento & purificação , Viola/química , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Massas em Tandem , Bacillus subtilis/efeitos dos fármacos , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos
2.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39264087

RESUMO

This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Streptomyces , Streptomyces/química , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Streptomyces/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Índia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , RNA Ribossômico 16S/genética , Florestas , Biofilmes/efeitos dos fármacos , Sequenciamento Completo do Genoma , Humanos , Família Multigênica
3.
Sci Rep ; 14(1): 21573, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284874

RESUMO

Herbal medicines are important for ensuring sustainable development goals (SDGs) in healthcare, particularly in developing countries with high rates of antimicrobial resistance (AMR) and little access to medical facilities. Thymus vulgaris is a widely used herbal medicinal plant known for its secondary metabolites and antimicrobial properties. The present study involved a comprehensive examination of the isolation, characterization, and antibacterial activity of Thymus vulgaris obtained from Ethiopia. The aerial part of the plant Thymus vulgaris was successively extracted with hexane, chloroform, and methanol based on differences in polarity. Phytochemical screening tests conducted against hexane, chloroform and MeOH crude extracts indicated the presence of some secondary metabolites. Based on the thin-layer chromatography tests, the chloroform extract was subjected to column chromatography, yielding Tv-2 compounds, namely 5-isopropyl-2-methylphenol. The structures of the compounds were elucidated via spectroscopic methods (UV-Vis, FT-IR and NMR). We investigated the antibacterial properties of hexane crude extract, chloroform crude extract, MeOH crude extract, and isolated fractions derived from T. vulgaris against various bacterial strains. This study contributes to a better understanding of the bioactive components present in Thymus vulgaris crude extracts and their potential role in tackling microbial infections.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Etiópia , Bactérias/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação
4.
J Sep Sci ; 47(15): e2400222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091177

RESUMO

Drug-resistant bacterial infections pose a significant challenge in the field of bacterial disease treatment. Finding new antibacterial pathways and targets to combat drug-resistant bacteria is crucial. The bacterial quorum sensing (QS) system regulates the expression of bacterial virulence factors. Inhibiting bacterial QS and reducing bacterial virulence can achieve antibacterial therapeutic effects, making QS inhibition an effective strategy to control bacterial pathogenicity. This article mainly focused on the PqsA protein in the QS system of Pseudomonas aeruginosa. An affinity chromatography medium was developed using the SpyTag/SpyCatcher heteropeptide bond system. Berberine, which can interact with the PqsA target, was screened from Phellodendron amurense by affinity chromatography. We characterized its structure, verified its inhibitory activity on P. aeruginosa, and preliminarily analyzed its mechanism using molecular docking technology. This method can also be widely applied to the immobilization of various protein targets and the effective screening of active substances.


Assuntos
Antibacterianos , Cromatografia de Afinidade , Phellodendron , Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/química , Phellodendron/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana
5.
World J Microbiol Biotechnol ; 40(10): 290, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102120

RESUMO

Strain Lactiplantibacillus plantarum D1 with bacteriocin producing ability was found in the intestine of Gambusia affinis. The bacteriocin was found to have high inhibitory activity against multiple Streptococcus species and several other Gram-positive and Gram-negative bacteria. Bacteriocin was purified from culture supernatant by ion-exchange chromatography, Sep-Pak C18 cartridge, and reverse-phase high-performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectral analysis determined that purified bacteriocin has a molecular mass of 2,731 Da. A partial N-terminal sequence KRKKHKXQIYNNGM was obtained from the Edman analysis. The N-terminal sequence was employed to search against a translation of the draft genome of strain D1. The translated full amino acid sequence of the mature peptide is as follows: NH2- KRKKHKCQIYNNGMPTGQYRWC, which has a molecular weight of 2738 Da. A BLAST search revealed that this bacteriocin was most similar to bactofencin A but differed from it with three amino acid residues. No identical peptide or protein has been previously reported, and this peptide, termed bactofencin YH, was therefore considered to be a new bacteriocin produced by Lactiplantibacillus plantarum D1.


Assuntos
Sequência de Aminoácidos , Antibacterianos , Bacteriocinas , Peso Molecular , Streptococcus , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Bacteriocinas/metabolismo , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Testes de Sensibilidade Microbiana , Animais , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos
6.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39127610

RESUMO

Staphylococcus aureus, particularly multi-drug resistant strains, presents significant challenges in dairy farming due to its role in causing bovine mastitis, which leads to substantial economic losses and limited treatment options. Seeking alternative therapies, we investigated the potential of a topical formulation derived from the medicinal herb Salvia officinalis to combat S. aureus growth and biofilms associated with bovine mastitis. Through systematic extraction in different solvents and fractionation by column chromatography, we isolated and identified three key multicyclic terpenoids-ferruginol, sugiol, and sclareol-exhibiting significant antimicrobial activity. The formulation effectively inhibited biofilm formation, with minimum inhibitory concentration (MIC) values ranging from 0.09 to 0.74 mg ml-1 against clinical S. aureus strains, comparable to or lower than those of the pure compounds. Moreover, it displayed robust anti-adhesive properties, reducing biofilm formation by 20%-79% at subinhibitory concentrations. Furthermore, the formulation successfully disrupted pre-existing biofilms, achieving reductions ranging from 30% to 82%. Cytotoxicity assays confirmed the safety of the formulation on mammary epithelial cells, with cell viability maintained at 100% at MIC. Our findings underscore the therapeutic potential of Sa. officinalis-derived compounds in managing bovine mastitis caused by S. aureus, emphasizing their antimicrobial efficacy and safety profile.


Assuntos
Antibacterianos , Biofilmes , Mastite Bovina , Testes de Sensibilidade Microbiana , Extratos Vegetais , Plantas Medicinais , Salvia officinalis , Staphylococcus aureus , Terpenos , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Animais , Bovinos , Salvia officinalis/química , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Plantas Medicinais/química , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Feminino
7.
Pharm Biol ; 62(1): 648-658, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39150231

RESUMO

CONTEXT: Derris reticulata Craib. and Glycyrrhiza glabra L., of the Fabaceae, have been used as active components in Thai herbal formulas for the treatment of fever and skin diseases. OBJECTIVE: To evaluate the physicochemical and pharmacological properties of the developed herbal gel formulation containing the combined extract from D. reticulata stem wood and G. glabra root (RGF). MATERIALS AND METHODS: The potential of the herbal gel formulation containing RGF (8% w/w) as the active ingredient was studied by evaluating the anti-inflammatory, antioxidant, and anti-Staphylococcus aureus activities using quantitative reverse transcription-polymerase chain reaction assay, spectrophotometric method, and broth microdilution technique, respectively. The reference standards for the biological testing included Nω-nitro-L-arginine (L-NA), ascorbic acid, catechin, and penicillin G. The stability study of the RGF herbal gel was performed by a heating-cooling test (at 45 °C for 24 h and at 4 °C for 24 h/1 cycle; for 6 cycles), and the bioactive marker compounds in the herbal gel were investigated by the HPLC technique. RESULTS: RGF showed promising pharmacological effects, particularly on its anti-inflammatory property (IC50 73.86 µg/mL), compared to L-NA (IC50 47.10 µg/mL). The RGF-containing gel demonstrated anti-inflammatory (IC50 3.59 mg/mL) and free radical scavenging effects (IC50 0.05-4.39 mg/mL), whereas it had no anti-S. aureus activity (MIC > 10 mg/mL). The active ingredient in the developed herbal gel significantly inhibited lipopolysaccharide-induced nitric oxide production by downregulating iNOS mRNA levels. The contents of the bioactive markers in the RGF gel (lupinifolin and glabridin) did not change significantly after stability testing. DISCUSSION AND CONCLUSIONS: The RGF-containing gel has potential to be further developed as an herbal product for the treatment of skin inflammation.


Assuntos
Anti-Inflamatórios , Antioxidantes , Derris , Géis , Glycyrrhiza , Extratos Vegetais , Staphylococcus aureus , Glycyrrhiza/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Animais , Derris/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Camundongos , Raízes de Plantas/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/administração & dosagem , Células RAW 264.7 , Estabilidade de Medicamentos
8.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124853

RESUMO

Four previously unreported triterpenoid saponins named 3ß-hydroxy-23-oxours-12-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside G) (1), 23-O-acetyl-3ß-hydroxyurs-12-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside H) (2), ursolic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl] ester (mannioside I) (3), and 3ß-hydroxy-23-oxolup-20(29)-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside J) (4) were isolated as minor constituents from the EtOAc soluble fraction of the MeOH extract of the leaves of Schefflera mannii along with the known compounds 23-hydroxyursolic acid 28-O-ß-D-glucopyranosyl ester (5), ursolic acid 28-O-ß-D-glucopyranosyl ester (6), pulsatimmoside B (7) betulinic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl] ester (8), 23-hydroxy-3-oxo-urs-12-en-28-oic acid (9), hederagenin (10), ursolic acid (11), betulinic acid (12), and lupeol (13). Their structures were elucidated by a combination of 1D and 2D NMR analysis and mass spectrometry. The MeOH extract, the EtOAc and n-BuOH fractions, and some of the isolated compounds were evaluated for their antibacterial activity against four bacteria: Staphylococcus aureus ATCC1026, Staphylococcus epidermidis ATCC 35984, Escherichia coli ATCC10536, and Klepsiella pnemoniae ATCC13882. They were also screened for their antioxidant properties, but no significant results were obtained.


Assuntos
Antibacterianos , Saponinas , Triterpenos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Saponinas/química , Saponinas/farmacologia , Saponinas/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estrutura Molecular , Folhas de Planta/química , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Araliaceae/química
9.
Inorg Chem ; 63(33): 15311-15322, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39115455

RESUMO

The widespread use and contamination of natural sources by new-generation drugs and pesticides have enhanced concern about environmental pollution. Understanding the above importance, we developed a superhydrophobic metal-organic framework (MOF) (SHMOF': [Zr6O4(OH)4(BDC-NH-CO-R)2.4(BDC-NH2)0.6(CF3COO)6]·2.5H2O·4DMF) for ecological remediation via adsorption-based separation of hydrophobic drugs (flurbiprofen) and pesticides (fluazinam). The newly developed SHMOF' has a high adsorption capacity toward flurbiprofen and fluazinam, i.e., 435 and 575 mg/g, respectively. The adsorption equilibrium time of the MOF is very short (15 and 10 min for flurbiprofen and fluazinam, respectively). The outstanding superhydrophobic nature of the MOF was employed to separate flurbiprofen and fluazinam from highly alkaline and acidic media and environmental water samples. The SHMOF' has excellent selectivity toward the adsorption-based separation of flurbiprofen and fluazinam in the coexistence of common analytes. Again, we developed a polypropylene (PP) fabric-based composite of SHMOF' (SHMOF'@PP) to separate the hydrophobic targeted analytes by using a zero-energy-consuming filtration-based separation method, which made this separation process cost-efficient and user-friendly. Moreover, Ag nanoparticles were doped to the superhydrophobic composite. The Ag-doped reusable SHMOF'@PP@Ag composite exhibited excellent bacterial antiadhesion and antibacterial properties toward Staphylococcus aureus bacteria.


Assuntos
Antibacterianos , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas , Praguicidas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Praguicidas/isolamento & purificação , Praguicidas/química , Praguicidas/farmacologia , Adsorção , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Flurbiprofeno/química , Flurbiprofeno/farmacologia , Flurbiprofeno/isolamento & purificação , Estrutura Molecular
10.
Pharm Biol ; 62(1): 666-675, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39205473

RESUMO

CONTEXT: Plant peptides garner attention for their potential antimicrobial properties amid the rising concern over antibiotic-resistant bacteria. OBJECTIVE: This study investigates the antibacterial potential of crude peptide extracts from 27 Thai plants collected locally. MATERIALS AND METHODS: Peptide extracts from 34 plant parts, derived from 27 Thai plants, were tested for their antimicrobial efficacy against four highly resistant bacterial strains: Streptococcus aureus MRSA, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The stability of these peptide extracts was examined at different temperatures, and the synergistic effects of two selected plant peptide extracts were investigated. Additionally, the time-kill kinetics of the individual extracts and their combination were determined against the tested pathogens. RESULTS: Peptides from Allium sativum L. and Allium oschaninii O. Fedtsch (Amaryllidaceae) were particularly potent, inhibiting bacterial growth with MICs ranging from 1.43 to 86.50 µg/mL. The consistent MICs and MBCs of these extracts across various extraction time points highlight their reliability. Stability tests reveal that these peptides maintain their antimicrobial activity at -20 °C for over a month, emphasizing their durability for future exploration and potential applications in addressing antibiotic resistance. Time-kill assays elucidate the time and concentration-dependent nature of these antimicrobial effects, underscoring their potent initial activity and sustained efficacy over time. DISCUSSION AND CONCLUSIONS: This study highlights the antimicrobial potential of Allium-derived peptides, endorsing them for combating antibiotic resistance and prompting further investigation into their mechanisms.


Assuntos
Allium , Antibacterianos , Alho , Testes de Sensibilidade Microbiana , Extratos Vegetais , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Allium/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana , Tailândia , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Sinergismo Farmacológico
11.
Pan Afr Med J ; 48: 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184844

RESUMO

Introduction: the present study aimed at isolating and characterizing actinomycete from unexplored Windhoek rocky crest mountainous soil and extracting bioactive metabolites as possible therapeutics against common life-threatening Streptococcus pneumonia (S. pneumonia) and Stachybotrys chartarum (S. chartarum). Methods: chemotaxonomy and biochemical methods were used to identify the isolates. The solvent extraction method was used to extract bioactive compounds. Agar overlay and disc diffusion methods were used to determine the antimicrobial activity of isolates and extracted bioactive metabolites against S. pneumonia and S. chartarum. The antioxidant activity of the extracted bioactive metabolites was determined using 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method with ascorbic acid as a positive control. Comparison between groups was done using a Two-way ANOVA, followed by Bonferroni post-test. Results: three distinct isolates from 3 soil samples were identified on starch casein agar and distinguished using biochemical tests. All three isolates showed strong inhibitory activity against S. pneumonia with average growth inhibition zones between 18.0±1.00 and 27±0.00 mm p< 0.005. All isolates showed potent inhibitory activity against S. chartarum with the average inhibition zones ranging between 42.0±1.00 and 48±0.00 mm, p< 0.005. The chloroform extracts showed potent DPPH activity of up to 73± 1.41%. Conclusion: growth conditions and extraction solvents can influence the antimicrobial and antioxidant properties of bioactive metabolites.


Assuntos
Actinobacteria , Antibacterianos , Antioxidantes , Microbiologia do Solo , Streptococcus pneumoniae , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Humanos , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Namíbia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação
12.
Inflammopharmacology ; 32(5): 3327-3345, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133352

RESUMO

Wounds or chronic injuries are associated with high medical costs so, develop healing-oriented drugs is a challenge for modern medicine. The identification of new therapeutic alternatives focuses on the use of natural products. Therefore, the main goal of this study was to evaluate the healing potential and anti-inflammatory mechanism of action of extracts and the main compounds derived from Myrciaria plinioides D. Legrand leaves. The antimicrobial activity of leaf extracts was analyzed. Cell viability, cytotoxicity and genotoxicity of plant extracts and compounds were also assessed. Release of pro- and anti-inflammatory cytokines and TGF-ß by ELISA, and protein expression was determined by Western Blot. The cell migration and cell proliferation of ethanol and aqueous leaf extracts and p-coumaric acid, quercetin and caffeic acid compounds were also evaluated. The aqueous extract exhibited antibacterial activity and, after determining the safety concentrations in three assays, we showed that this extract induced p38-α MAPK phosphorylation and the same extract and the p-coumaric acid decreased COX-2 and caspase-3, -8 expression, as well as reduced the TNF-α release and stimulated the IL-10 in RAW 264.7 cells. In L929 cells, the extract and p-coumaric acid induced TGF-ß release, besides increasing the process of cell migration and proliferation. These results suggested that the healing properties of Myrciaria plinioides aqueous extract can be associated to the presence of phenolic compounds, especially p-coumaric acid, and/or glycosylated metabolites.


Assuntos
Anti-Inflamatórios , Movimento Celular , Extratos Vegetais , Folhas de Planta , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Cicatrização/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Myrtaceae/química , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação
13.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
14.
Microb Pathog ; 194: 106836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103127

RESUMO

Marine microorganisms offer a promising avenue for the eco-friendly synthesis of nanoparticles due to their unique biochemical capabilities and adaptability to various environments. This study focuses on exploring the potential of a marine bacterial species, Stenotrophomonas rhizophila BGNAK1, for the synthesis of biocompatible copper nanoparticles and their application for hindering biofilms formed by monomicrobial species. The study begins with the isolation of the novel marine S. rhizophila species from marine soil samples collected from the West coast region of Kerala, India. The isolated strain is identified through 16S rRNA gene sequencing and confirmed to be S. rhizophila species. Biosynthesis of copper nanoparticles using S. rhizophila results in the formation of nanoparticles with size of range 10-50 nm. The nanoparticles exhibit a face-centered cubic crystal structure of copper, as confirmed by X-Ray Diffraction analysis. Furthermore, the synthesized nanoparticles display significant antimicrobial activity against various pathogenic bacteria and yeast. The highest inhibitory activity was against Staphylococcus aureus with a zone of 27 ± 1.00 mm and the least activity was against Pseudomonas aeruginosa with a zone of 22 ± 0.50 mm. The zone of inhibition against Candida albicans was 16 ± 0.60 mm. The antibiofilm activity against biofilm-forming clinical pathogens was evidenced by the antibiofilm assay and SEM images. Additionally, the copper nanoparticles exhibit antioxidant activity, as evidenced by their scavenging ability against DPPH, hydroxyl, nitric oxide, and superoxide radicals, as well as their reducing power in the FRAP assay. The study highlights the potential of the marine bacterium S. rhizophila BGNAK1 for the eco-friendly biosynthesis of copper nanoparticles with diverse applications. Synthesized nanoparticles exhibit promising antibiofilm, antimicrobial, and antioxidant properties, suggesting their potential utility in various fields such as medicine, wastewater treatment, and environmental remediation.


Assuntos
Anti-Infecciosos , Antioxidantes , Biofilmes , Candida albicans , Cobre , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Cobre/farmacologia , Cobre/química , Cobre/metabolismo , Candida albicans/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/metabolismo , Nanopartículas Metálicas/química , RNA Ribossômico 16S/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Índia , Stenotrophomonas/metabolismo , Stenotrophomonas/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Difração de Raios X , Microbiologia do Solo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/biossíntese
15.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39138062

RESUMO

AIM: The aim of this study was to purify proanthocyanidins from areca nut seeds (P-AN) and to investigate the bactericidal activity and mechanism of the purified products against Streptococcus mutans. METHODS AND RESULTS: Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, Fourier transform infrared, Matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MADLI-TOF-MS), and thiolysis experiment were used for P-AN chemical analysis. Time-kill analysis and glycolytic pH drop were used to evaluate the activity of S. mutans in vitro. Meanwhile, the investigation of the bacteriostatic mechanism included membrane protein, fluidity, permeability, and integrity tests. The results showed that P-AN was a kind of proanthocyanidin mainly composed of B-type proanthocyanidins and their polymers. Moreover, MADLI-TOF-MS and thiolysis experiments demonstrated that the degree of polymerization of P-AN was 13. The time-kill analysis showed that P-AN had strong bactericidal activity against S. mutans. P-AN at minimum inhibitory concentration (MIC) concentrations was able to induce S. mutans death, while complete lethality occurred at 2 MIC. Glycolysis test showed that P-AN significantly inhibited S. mutans acid production (P < .01). The morphological changes of S. mutans were observed by scanning electron microscopy and transmission electron microscopy experiments, which indicated that P-AN destroyed the cellular structure of S. mutans. At the same time, significant changes were observed in membrane proteins, fluidity, permeability, and integrity. CONCLUSION: P-AN can effectively inhibit the activity of S. mutans. P-AN can reduce the erosion of the tooth surface by the acid of S. mutans. P-AN could break the structure of the cell membrane protein of S. mutans. P-AN could destroy the integrity of membrane, resulting in the death of S. mutans.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Proantocianidinas , Sementes , Streptococcus mutans , Proantocianidinas/farmacologia , Proantocianidinas/isolamento & purificação , Proantocianidinas/química , Streptococcus mutans/efeitos dos fármacos , Sementes/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Nozes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
16.
Int J Biol Macromol ; 277(Pt 3): 134490, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111494

RESUMO

Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.


Assuntos
Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Células MCF-7 , Concentração de Íons de Hidrogênio , Temperatura , Alga Marinha/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Phaeophyceae/química , Testes de Sensibilidade Microbiana , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação
17.
Phytochemistry ; 227: 114232, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39097216

RESUMO

A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 µg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 µM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.


Assuntos
Antibacterianos , Anti-Inflamatórios , Atractylodes , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Atractylodes/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Simulação de Acoplamento Molecular , Animais , Relação Estrutura-Atividade , Camundongos , Relação Dose-Resposta a Droga , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Bioensaio , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos
18.
J Nat Med ; 78(4): 919-928, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127865

RESUMO

Basidiomycetes with a wide variety of skeletons of secondary metabolites can be expected to be the source of new interesting biological compounds. During our research on basidiomycetes, two new C-29 oxygenated oleanane-type triterpenes (1 and 2) and torulosacid (3), a muurolene type sesquiterpenoid with a five-membered ether ring along with nine known compounds (4-12), were isolated from the MeOH extract of the fruiting bodies of Fuscoporia torulosa. The structures of 1-3 were determined by NMR and HREIMS analysis. Further studies on the stereochemistry of 3 were conducted using X-ray crystallographic analysis and comparison of experimental and calculated ECD spectra. In the antimicrobial assay of isolates, 1, 7, and 9 showed growth inhibitory activity against methicillin-resistant Staphylococcus aureus and other gram-positive strains. Isolation of oleanane type triterpenes from fungi including basidiomycetes, is a unique report that could lead to further isolation of new compounds and the discovery of unique biosynthetic enzymes.


Assuntos
Carpóforos , Testes de Sensibilidade Microbiana , Sesquiterpenos , Carpóforos/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Estrutura Molecular , Basidiomycota/química , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cristalografia por Raios X , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
19.
Mar Drugs ; 22(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39195447

RESUMO

Two new compounds, macrolactin XY (1) and (5R, 9S, 10S)-5-(hydroxymethyl)-1,3,7-decatriene-9,10-diol (2), together with nine known compounds (3-11) were isolated from the marine Bacillus subtilis sp. 18 by the OSMAC strategy. These compounds were evaluated for antibacterial activity against six tested microorganisms. Compounds 1-5 and 7-10 showed varied antibacterial activity, with the minimum inhibitory concentration (MIC) ranging from 3 to 12 µg/mL. Macrolactin XY (1) was found to possess superior antibacterial activity, especially exhibiting significant effectiveness against Enterococcus faecalis. The antibacterial activity mechanism against E. faecalis was investigated. The mechanism may disrupt bacterial cell membrane integrity and permeability, and also inhibit the expression of genes associated with bacterial energy metabolism, as established by the experiments concerning cell membrane potential, SDS-PAGE electrophoresis, cell membrane integrity, and key gene expressions. This study offers valuable insights and serves as a theoretical foundation for the future development of macrolactins as antibacterial precursors.


Assuntos
Antibacterianos , Bacillus subtilis , Macrolídeos , Testes de Sensibilidade Microbiana , Bacillus subtilis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Macrolídeos/farmacologia , Macrolídeos/isolamento & purificação , Macrolídeos/química , Enterococcus faecalis/efeitos dos fármacos , Organismos Aquáticos , Membrana Celular/efeitos dos fármacos
20.
Mar Drugs ; 22(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39195470

RESUMO

Atopic dermatitis (AD) is a chronic skin condition that is characterized by dysregulated immune responses and a heightened risk of Staphylococcus aureus infections, necessitating the advancement of innovative therapeutic methods. This study explored the potential of (6Z,9Z,12Z,15Z)-(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl octadeca-6,9,12,15-tetraenoate (HSN-S1), a compound derived from the marine alga Hizikia fusiformis, which shows anti-inflammatory, antimicrobial, and immunomodulatory properties. HSN-S1 was isolated and characterized using advanced chromatographic and spectroscopic methods. Its efficacy was evaluated via in vitro assays with keratinocytes, macrophages, and T cells to assess cytokine suppression and its immunomodulatory effects; its antibacterial activity against S. aureus was quantified. The in vivo effectiveness was validated using a 2,4-dinitrochlorobenzene-induced AD mouse model that focused on skin pathology and cytokine modulation. HSN-S1 significantly reduced pro-inflammatory cytokine secretion, altered T-helper cell cytokine profiles, and showed strong antibacterial activity against S. aureus. In vivo, HSN-S1 alleviated AD-like symptoms in mice and reduced skin inflammation, transepidermal water loss, serum immunoglobulin-E levels, and Th2/Th17 cytokine outputs. These findings suggest HSN-S1 to be a promising marine-derived candidate for AD treatment, as it offers a dual-target approach that could overcome the limitations of existing therapies, hence warranting further clinical investigation.


Assuntos
Antibacterianos , Citocinas , Dermatite Atópica , Imunossupressores , Phaeophyceae , Staphylococcus aureus , Dermatite Atópica/tratamento farmacológico , Animais , Camundongos , Phaeophyceae/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Imunossupressores/farmacologia , Imunossupressores/isolamento & purificação , Imunossupressores/química , Modelos Animais de Doenças , Ésteres/farmacologia , Ésteres/química , Feminino , Camundongos Endogâmicos BALB C , Organismos Aquáticos , Queratinócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA