Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.620
Filtrar
1.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003081

RESUMO

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Nanopartículas/química , Modelos Químicos , Antibacterianos/química , Substâncias Húmicas
2.
Carbohydr Res ; 542: 109203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964016

RESUMO

A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPO-oxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness), functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 µm, iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ± 0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03 to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films could be effectively utilized as antibacterial wound dressings.


Assuntos
Antibacterianos , Antioxidantes , Bandagens , Quitosana , Óxidos N-Cíclicos , Escherichia coli , Nanopartículas , Oxirredução , Staphylococcus aureus , Quitosana/química , Nanopartículas/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Óxidos N-Cíclicos/química , Testes de Sensibilidade Microbiana
3.
Anal Methods ; 16(28): 4691-4699, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38973362

RESUMO

Herein, a new dual-model photoelectrochemical (PEC)/electrochemical (EC) sensor based on Z-scheme titanium dioxide (TiO2) disk/methylene blue (MB) sensibilization for the detection of kanamycin (Kana) was developed. Metal-organic framework-derived porous TiO2 disks were synthesized and exhibited excellent anodic photocurrent under visible light excitation. Subsequently, amino-labeled double-stranded DNA (dsDNA) was introduced into the modified electrode. Photocurrent was enhanced with MB embedded in dsDNA to form Z-scheme TiO2/MB sensibilization. When the target, Kana, was present, it specifically bound to the aptamer in the dsDNA, leading to the disruption of the dsDNA structure and the release of MB. This release of MB and the increase in target spatial resistance resulted in a significant weakening of PEC signal and a decreased oxidation peak current of MB. The PEC sensor successfully detected Kana in the range of 2-1000 pM with an LOD of 0.17 pM. Meanwhile, the EC sensor for Kana detection showed a linear range of 5-500 pM with an LOD of 1.8 pM. Additionally, the sensor exhibited excellent selectivity, reproducibility, stability, and good recoveries when applied to milk and honey samples. As a result, this method has the potential for application in ensuring food safety through the rapid determination of antibiotics in food.


Assuntos
Técnicas Eletroquímicas , Canamicina , Azul de Metileno , Leite , Titânio , Titânio/química , Canamicina/análise , Canamicina/química , Azul de Metileno/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Leite/química , Animais , Limite de Detecção , Técnicas Biossensoriais/métodos , Mel/análise , Antibacterianos/análise , Antibacterianos/química , Processos Fotoquímicos , Reprodutibilidade dos Testes , Eletrodos
4.
J Enzyme Inhib Med Chem ; 39(1): 2372731, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39012078

RESUMO

This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the ß-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.


Assuntos
Acinetobacter baumannii , Ânions , Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Anidrases Carbônicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Ânions/farmacologia , Ânions/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Estrutura Molecular
5.
Luminescence ; 39(7): e4817, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39019841

RESUMO

Alternate antibiotics developed through the involvement of nanomaterials are gaining interest due to their economical and lower toxicity concerns. A newly developed biopolymer-based polyvinylpyrrolidone/zinc oxide (PVP/ZnO) nanocomposite (NCs) was efficiently synthesized by an environment-friendly approach, utilizing onion and garlic peel extract as a bio-surfactant, zinc acetate as the source, PVP as the stabilizing agent, and sodium hydroxide as the precipitant. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) investigations verified the crystalline properties of ZnO, PVP, and PVP/ZnO-based NCs. The structure of the biopolymer-linked ZnO particles interpolated inside the PVP array was seen to have a layered and flaky structure, as validated by field emission scanning electron microscopy (FE-SEM) analysis, which revealed its occurrence in the nanometer range. The XRD examination verified that the surface topographical image of PVP/ZnO NCs had an average thickness of 21 nm. The PVP/ZnO nanocrystals demonstrated exceptional photocatalytic efficacy, with a breakdown rate of 88% and almost 92% for the methylene blue dye. Therefore, the PVP/ZnO matrix exhibits superior antibacterial activity compared to other extracts, resulting in greater microbial suppression. The results above indicate that the ZnO-intercalated PVP array has a stronger reinforcing effect than other components. Hence, PVP/ZnO nanocrystals exhibit enormous potential as a favorable substance for environmental and biomedical intentions.


Assuntos
Antibacterianos , Nanocompostos , Processos Fotoquímicos , Povidona , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Povidona/química , Nanocompostos/química , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Luminescência , Tamanho da Partícula , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Azul de Metileno/química
6.
Nanoscale ; 16(28): 13613-13626, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38958597

RESUMO

Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.


Assuntos
Anti-Inflamatórios , Hidrogéis , Peptídeos , Cicatrização , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Células A549 , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Hemólise/efeitos dos fármacos , Animais , Simulação de Dinâmica Molecular , Camundongos , Linhagem Celular
7.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968558

RESUMO

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Assuntos
Regeneração Óssea , Amido , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos , Amido/química , Umidade , Humanos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Difosfatos/química , Difosfatos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Pirofosfato de Cálcio/química , Pirofosfato de Cálcio/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Crânio/efeitos dos fármacos
8.
ACS Appl Mater Interfaces ; 16(28): 36017-36029, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975983

RESUMO

Oral infectious diseases have a significant impact on the health of oral and maxillofacial regions, as well as the overall well-being of individuals. Carvacrol and thymol, two isomers known for their effective antibacterial and anti-inflammatory properties, have gained considerable attention in the treatment of oral infectious diseases. However, their application as topical drugs for oral use is limited due to their poor physical and chemical stability. UiO-66, a metal-organic framework based on zirconium ion (Zr4+), exhibits high drug loading capability. Carvacrol and thymol were efficiently loaded onto UiO-66 with loading rates of 79.60 ± 0.71% and 79.65 ± 0.76%, respectively. The release rates of carvacrol and thymol were 77.82 ± 0.87% and 76.51 ± 0.58%, respectively, after a period of 72 h. Moreover, Car@UiO-66 and Thy@UiO-66 demonstrated excellent antibacterial properties against Candida albicans, Escherichia coli, and Staphylococcus aureus with minimum bactericidal concentrations (MBC) of 0.313 mg/mL, 0.313 mg/mL, and 1.25 mg/mL, respectively. Furthermore, based on the results of the CCK8 cytotoxicity assay, even at concentrations as high as 1.25 mg/mL, Car@UiO-66 and Thy@UiO-66 exhibited excellent biocompatibility with a relative cell survival rate above 50%. These findings suggest that Car@UiO-66 and Thy@UiO-66 possess favorable biocompatibility properties without significant toxicity towards periodontal membrane cells. Additionally, in vivo studies confirmed the efficacy of Car@UiO-66and Thy@UiO-66 in reducing inflammation, promoting bone formation through inhibition of TNF-a and IL6 expression, enhancement of IL10 expression, and acceleration of bone defect healing. Therefore, the unique combination of antibacterial, anti-inflammatory, and osteogenic properties make Car@UiO-66 and Thy@Ui O-66 promising candidates for the treatment of oral infectious diseases and repairing bone defects.


Assuntos
Antibacterianos , Anti-Inflamatórios , Candida albicans , Cimenos , Escherichia coli , Estruturas Metalorgânicas , Staphylococcus aureus , Timol , Timol/química , Timol/farmacologia , Cimenos/química , Cimenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Ratos , Osteogênese/efeitos dos fármacos , Humanos
9.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38991514

RESUMO

The widespread use of antibiotics often increases bacterial resistance. Herein, we reported a silver peroxide-incorporated carbon dots (defined as Ag2O2-CDs) with high photothermal conversion efficiency viain situoxidation process. The prepared Ag2O2-CDs exhibited ultra-small size of 2.0 nm and hybrid phase structure. Meanwhile, the Ag2O2-CDs were of a similar optical performance comparing with traditional carbon dots (CDs). Importantly, the incorporation of Ag2O2into CDs significantly enhanced photothermal conversion efficiency from 3.8% to 28.5%. By combining silver ion toxicity and photothermal ablation, the Ag2O2-CDs were capable of destroying gram-positive and gram-negative bacterium effectively. These findings demonstrated that the Ag2O2-CDs could be served as a potential antibacterial agent for clinical applications.


Assuntos
Antibacterianos , Carbono , Pontos Quânticos , Compostos de Prata , Carbono/química , Pontos Quânticos/química , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Prata/química , Compostos de Prata/farmacologia , Óxidos/química , Óxidos/farmacologia , Peróxidos/química , Peróxidos/farmacologia , Prata/química , Prata/farmacologia , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos
10.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023091

RESUMO

Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.


Assuntos
Anti-Infecciosos , Biofilmes , Incrustação Biológica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
11.
PLoS One ; 19(7): e0307289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012879

RESUMO

The aim of this study was to evaluate the physicochemical composition and antibacterial activity of Brazilian propolis extracts from different types, concentrations, and extraction solvents and from different regions in Brazil. A total of 21 samples were analyzed, comprising 14 samples from Apis mellifera (12 green, 1 brown, and 1 red) and 7 samples from stingless bees (3 mandaçaia, 2 jataí, 1 hebora, and 1 tubuna). The analyses performed were dry extract, total phenolic content (TPC) and antioxidant activity (DPPH and ABTS). The antibacterial activity was performed by Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC). The results showed that very low levels of phenolic compounds and antioxidant activity decreased the antimicrobial activity of the propolis extracts from tubuna and jataí. However, there was no correlation between the increase in propolis concentration in the extract, and the increase in antimicrobial activity. The highest TPC and antioxidant activity was obtained for green propolis extract made with 70% raw propolis that presented similar antibacterial activity to the samples formulated with 30% or less raw propolis. The aqueous propolis extract showed lower antimicrobial activity compared to the alcoholic extracts, indicating that ethanol is a better solvent for extracting the active compounds from propolis. It was observed that the MIC (0.06 to 0.2 mg/mL) and MBC (0.2 to 0.5 mg/mL) values for Gram-negative bacteria were higher compared to Gram-positive bacteria (MIC 0.001-0.2 mg/mL, and the MBC 0.02-0.5 mg/mL). The propolis extracts that exhibited the highest antimicrobial activities were from stingless bees hebora from the Distrito Federal (DF) and mandaçaia from Santa Catarina, showing comparable efficacy to samples 5, 6, and 7, which were the green propolis from the DF. Hence, these products can be considered an excellent source of bioactive compounds with the potential for utilization in both the pharmaceutical and food industries.


Assuntos
Antibacterianos , Antioxidantes , Testes de Sensibilidade Microbiana , Própole , Animais , Própole/química , Própole/farmacologia , Abelhas , Antibacterianos/farmacologia , Antibacterianos/química , Brasil , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/farmacologia , Fenóis/química , Fenóis/análise
12.
ACS Appl Mater Interfaces ; 16(28): 36077-36094, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949426

RESUMO

Periodontitis, an inflammatory bone resorption disease associated with dental plaque, poses significant challenges for effective treatment. In this study, we developed Mino@ZIF-8 nanoparticles inspired by the periodontal microenvironment and the unique properties of zeolitic imidazolate framework 8, aiming to address the complex pathogenesis of periodontitis. Transcriptome analysis revealed the active engagement of Mino@ZIF-8 nanoparticles in innate and adaptive inflammatory host defense and cellular metabolic remodeling. Through sustained release of the anti-inflammatory and antibacterial agent minocycline hydrochloride (Mino) and the generation of Zn2+ with pro-antioxidant effects during degradation, Mino@ZIF-8 nanoparticles synergistically alleviate inflammation and oxidative damage. Notably, our study focuses on the pivotal role of zinc ions in mitochondrial oxidation protection. Under lipopolysaccharide (LPS) stimulation, periodontal ligament cells undergo a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis, leading to reduced ATP production and increased reactive oxygen species levels. However, Zn2+ effectively rebalances the glycolysis-OXPHOS imbalance, restoring cellular bioenergetics, mitigating oxidative damage, rescuing impaired mitochondria, and suppressing inflammatory cytokine production through modulation of the AKT/GSK3ß/NRF2 pathway. This research not only presents a promising approach for periodontitis treatment but also offers novel therapeutic opportunities for zinc-containing materials, providing valuable insights into the design of biomaterials targeting cellular energy metabolism regulation.


Assuntos
Nanopartículas , Estresse Oxidativo , Periodontite , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia , Nanopartículas/química , Humanos , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Minociclina/farmacologia , Minociclina/química , Minociclina/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Imidazóis
13.
ACS Appl Mater Interfaces ; 16(28): 37041-37051, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950151

RESUMO

Slide-ring hydrogels containing polyrotaxane structures have been widely developed, but current methods are more complex, in which modified cyclodextrins, capped polyrotaxanes, and multistep reactions are often needed. Here, a simple one-pot method dissolving the pseudopolyrotaxane (pPRX) in a mixture of acrylamide and boric acid to form a slide-ring hydrogel by UV light is used to construct a tough, puncture-resistant antibacterial polyrotaxane hydrogel. As a new dynamic ring cross-linking agent, boric acid effectively improves the mechanical properties of the hydrogel and involves the hydrogel with fracture toughness. The polyrotaxane hydrogel can withstand 1 MPa compression stress and maintain the morphology integrity, showing 197.5 mJ puncture energy under a sharp steel needle puncture. Meanwhile, its significant antibacterial properties endow the hydrogel with potential applications in the biomedical field.


Assuntos
Antibacterianos , Ciclodextrinas , Escherichia coli , Hidrogéis , Poloxâmero , Rotaxanos , Rotaxanos/química , Rotaxanos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Poloxâmero/química , Escherichia coli/efeitos dos fármacos , Ciclodextrinas/química , Ácidos Bóricos/química , Ácidos Bóricos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
14.
ACS Appl Mater Interfaces ; 16(28): 36117-36130, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950522

RESUMO

Better infection control will accelerate wound healing and alleviate associated healthcare burdens. Traditional antibacterial dressings often inadequately control infections, inadvertently promoting antibacterial resistance. Our research unveils a novel, dual-functional living dressing that autonomously generates antibacterial agents and delivers electrical stimulation, harnessing the power of spore-forming Bacillus subtilis. This dressing is built on an innovative wearable microbial fuel cell (MFC) framework, using B. subtilis endospores as a powerful, dormant biocatalyst. The endospores are resilient, reactivating in nutrient-rich wound exudate to produce electricity and antibacterial compounds. The combination allows B. subtilis to outcompete pathogens for food and other resources, thus fighting infections. The strategy is enhanced by the extracellular synthesis of tin oxide and copper oxide nanoparticles on the endospore surface, boosting antibacterial action, and electrical stimulation. Moreover, the MFC framework introduces a pioneering dressing design featuring a conductive hydrogel embedded within a paper-based substrate. The arrangement ensures cell stability and sustains a healing-friendly moist environment. Our approach has proven very effective against three key pathogens in biofilms: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus demonstrating exceptional capabilities in both in vitro and ex vivo models. Our innovation marks a significant leap forward in wearable MFC-based wound care, offering a potent solution for treating infected wounds.


Assuntos
Antibacterianos , Bacillus subtilis , Fontes de Energia Bioelétrica , Biofilmes , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Dispositivos Eletrônicos Vestíveis , Bandagens , Cobre/química , Cobre/farmacologia , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia
15.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952675

RESUMO

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Próteses e Implantes , Ligas/farmacologia , Ligas/química , Ratos , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Masculino , Microtomografia por Raio-X , Linhagem Celular , Nanopartículas Metálicas/química
16.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954124

RESUMO

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Assuntos
Antibacterianos , Oxirredução , Tetraciclina , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina/química , Catálise , Águas Residuárias/química , Bismuto/química , Grafite/química , Compostos de Nitrogênio/química , Compostos de Tungstênio/química , Fotólise , Purificação da Água/métodos , Esgotos/química
17.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961578

RESUMO

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Assuntos
Antibacterianos , Parede Celular , Cobre , Cicatrização , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Humanos , Nanopartículas/química , Testes de Sensibilidade Microbiana
18.
PeerJ ; 12: e17588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948224

RESUMO

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Assuntos
Antibacterianos , Antineoplásicos , Extratos Vegetais , Folhas de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Azadirachta/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Química Verde/métodos , Tamanho da Partícula , Linhagem Celular Tumoral
19.
Sci Rep ; 14(1): 15014, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951169

RESUMO

Plants are valuable resources for drug discovery as they produce diverse bioactive compounds. However, the chemical diversity makes it difficult to predict the biological activity of plant extracts via conventional chemometric methods. In this research, we propose a new computational model that integrates chemical composition data with structure-based chemical ontology. For a model validation, two training datasets were prepared from literature on antibacterial essential oils to classify active/inactive oils. Random forest classifiers constructed from the data showed improved prediction performance in both test datasets. Prior feature selection using hierarchical information criterion further improved the performance. Furthermore, an antibacterial assay using a standard strain of Staphylococcus aureus revealed that the classifier correctly predicted the activity of commercially available oils with an accuracy of 83% (= 10/12). The results of this study indicate that machine learning of chemical composition data integrated with chemical ontology can be a highly efficient approach for exploring bioactive plant extracts.


Assuntos
Antibacterianos , Óleos Voláteis , Staphylococcus aureus , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Quimiometria/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
20.
J Nanobiotechnology ; 22(1): 387, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951841

RESUMO

Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.


Assuntos
Estruturas Metalorgânicas , Cicatrização , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cicatrização/efeitos dos fármacos , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Porosidade , Infecção dos Ferimentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...