Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38837364

RESUMO

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Assuntos
Antimaláricos , Artemisininas , Modelos Animais de Doenças , Animais , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Panamá , Aotidae , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artesunato/uso terapêutico , Artesunato/farmacologia , Artesunato/farmacocinética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , História do Século XX , Aminoquinolinas
2.
Antimicrob Agents Chemother ; 68(5): e0091523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517190

RESUMO

Primaquine is the mainstream antimalarial drug to prevent Plasmodium vivax relapses. However, this drug can induce hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency. Nanostructure formulations of primaquine loaded with D-galactose were used as a strategy to target the drug to the liver and decrease the hemolytic risks. Nanoemulsion (NE-Pq) and nanochitosan (NQ-Pq) formulations of primaquine diphosphate containing D-galactose were prepared and characterized by their physicochemistry properties. Pharmacokinetic and biodistribution studies were conducted using Swiss Webster mice. A single dose of 10 mg/kg of each nanoformulation or free primaquine solution was administered by gavage to the animals, which were killed at 0.5, 1, 2, 4, 8, and 24 hours. Blood samples and tissues were collected, processed, and analyzed by high-performance liquid chromatography. The nanoformulation showed sizes around 200 nm (NE-Pq) and 400 nm (NQ-Pq) and physicochemical stability for over 30 days. Free primaquine solution achieved higher primaquine Cmax in the liver than NE-Pq or NQ-Pq at 0.5 hours. However, the half-life and mean residence time (MRT) of primaquine in the liver were three times higher with the NQ-Pq formulation than with free primaquine, and the volume distribution was four times higher. Conversely, primaquine's half-life, MRT, and volume distribution in the plasma were lower for NQ-Pq than for free primaquine. NE-Pq, on the other hand, accumulated more in the lungs but not in the liver. Galactose-coated primaquine nanochitosan formulation showed increased drug targeting to the liver compared to free primaquine and may represent a promising strategy for a more efficient and safer radical cure for vivax malaria.


Assuntos
Antimaláricos , Quitosana , Galactose , Fígado , Primaquina , Primaquina/farmacocinética , Primaquina/química , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Galactose/química , Quitosana/química , Antimaláricos/farmacocinética , Nanopartículas/química , Distribuição Tecidual , Nanoestruturas/química , Masculino
3.
Malar J ; 21(1): 16, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998391

RESUMO

BACKGROUND: Vivax malaria is a neglected disease. There is an irrefutable need for better treatments with higher acceptability and efficacy. The treatment efficacy is influenced by many factors, including bioavailability. Hence, a straightforward strategy to improve vivax malaria treatment efficacy is the deployment of good quality formulations of primaquine and chloroquine. As these treatments were developed more than 70 years ago, many of the available data on blood levels of both drugs are based on obsolete analytical methodologies or pharmaceutical formulations, which are not available anymore. Herein, the results of three bioequivalence studies are presented, providing individual pharmacokinetic data on chloroquine and primaquine of more than a hundred healthy volunteers and using up-to-date analytical methods. METHODS: Three trials were designed as a single centre, randomized, single dose, open label, fasting, crossover bioequivalence studies comparing a new coated chloroquine tablet to the uncoated tablet, and 5 and 15 mg primaquine formulations to either an international reference product or the currently distributed tablets. Plasma concentrations of chloroquine and primaquine were measured using a validated HPLC-MS/MS method in accordance with current international regulatory requirements for bio-analytical methods. RESULTS: In total, a hundred eleven healthy volunteers of both genders were included in the three studies (n = 32; 30 and 56 respectively). No serious adverse events occurred. Drugs levels were measured in 5,520 blood samples. The estimated ratio of the geometric means of Cmax, AUC0-t and AUC0-inf of test and reference drugs and their 90% CI for chloroquine 150 mg, primaquine 15 mg and primaquine 5 mg were: 95.33% (89.18; 101.90), 86. 85% (82.61; 91.31), and 84.45% (76.95; 92.67); 93.28% (81.76; 106.41), 94.52% (86.13; 103.73) and 93.93% (85.83; 102.79); 97.44% (90.60; 104.78), 93.70% (87.04; 100.87) and 91.36% (85.27; 97.89), respectively. As Cmax and AUC0-t 90% CI were within the acceptance interval of 80-125% in all cases, the formulations tested were bioequivalent. CONCLUSIONS: In conclusion, the three studies provided detailed chloroquine and primaquine pharmacokinetic data in accordance with current regulatory standards. Together with other open data initiatives, this individual data may increase the accuracy of pharmacokinetic models guiding best dose, new combinations, regimens and formulations to optimize the current chloroquine and primaquine treatments for vivax malaria. The data presented here may support the deployment of high-quality drugs and evidence-based public health policies.


Assuntos
Antimaláricos/farmacocinética , Cloroquina/farmacocinética , Primaquina/farmacocinética , Adulto , Brasil , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Voluntários Saudáveis , Humanos , Malária Vivax/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Comprimidos , Adulto Jovem
4.
Lancet Child Adolesc Health ; 6(2): 86-95, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871570

RESUMO

BACKGROUND: Single-dose tafenoquine 300 mg is approved for Plasmodium vivax malaria relapse prevention in patients at least 16 years old. We aimed to determine appropriate oral tafenoquine paediatric dosing regimens, including a dispersible formulation, and evaluated tafenoquine efficacy and safety in children infected with P vivax. METHODS: This open-label, single-arm, non-comparative, multicentre, pharmacokinetic bridging, phase 2 study enrolled children (2-15 years) who weighed 5 kg or more, with glucose-6-phosphate dehydrogenase activity more than 70% of the local population median, and P vivax malaria infection, from three community health centres in Vietnam and one in Colombia. Patients received 3-day chloroquine plus oral single-dose tafenoquine as dispersible tablets (50 mg) or film-coated tablets (150 mg). Dosing groups were assigned by body weight, predicted to achieve similar median exposures as the approved 300 mg dose for adults: patients who weighed 5 kg or more to 10 kg received 50 mg, those who weighed more than 10 to 20 kg received 100 or 150 mg, those who weighed more than 20 to 35 kg received 200 mg, and patients who weighed more than 35 kg received 300 mg. Population pharmacokinetic analysis was done to develop a paediatric population pharmacokinetic model. The primary outcome was the tafenoquine area under the concentration-time curve extrapolated to infinity (AUC[0-∞]) by patient body weight in the pharmacokinetic population (all patients who received tafenoquine with at least one valid pharmacokinetic sample) estimated from a paediatric population pharmacokinetic model. A key prespecified secondary outcome was 4-month recurrence-free efficacy. This trial is registered with ClinicalTrials.gov, NCT02563496. FINDINGS: Between Feb 6, 2017, and Feb 17, 2020, 60 patients were enrolled into the study: 14 (23%) received tafenoquine 100 mg, five (8%) 150 mg, 22 (36%) 200 mg, and 19 (32%) 300 mg. The paediatric population pharmacokinetic model predicted adequate tafenoquine exposure at all doses. The predicted median AUC(0-∞) was 73·8 (90% prediction interval [PI] 46·9-117·0) µg × h/mL with the 50 mg dose for patients who weighed 5 kg or more to 10 kg, 87·5 (55·4-139·0) µg × h/mL with the 100 mg dose for body weight more than 10 to 20 kg, 110·7 (70·9-174·0) µg × h/mL with the 200 mg dose for body weight more than 20 to 35 kg, and 85·7 (50·6-151·0) µg × h/mL with the 300 mg dose for body weight more than 35 kg. 4-month recurrence-free efficacy was 94·7% (95% CI 84·6-98·3). Adverse events were consistent with previous studies, except for the seven (12%) of 60 patients who had post-dose vomiting or spitting with the 50 mg dispersed tablet. Following mitigation strategies, there were no additional occurrences of this adverse event. There were no deaths during the study. INTERPRETATION: For the prevention of P vivax relapse in children, single-dose tafenoquine, including a dispersible formulation, had exposure, safety, and efficacy consistent with observations in adolescents and adults, notwithstanding post-dose vomiting. FUNDING: GlaxoSmithKline and Medicines for Malaria Venture. TRANSLATIONS: For the Vietnamese and Spanish translations of the abstract see Supplementary Materials section.


Assuntos
Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Adolescente , Área Sob a Curva , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Feminino , Humanos , Masculino , Recidiva , Prevenção Secundária , Comprimidos
5.
Chem Biol Interact ; 350: 109688, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627786

RESUMO

Malaria remains one of the most important parasitic diseases in the world. The multidrug-resistant Plasmodium strains make the treatment currently available for malaria less effective. Therefore, the development of new drugs is necessary to overcome therapy resistance. Triazole derivatives exhibit several biological activities and provide a moiety that is promising from the biological perspective. Due to the structural similarity to NADH, it is believed that triazoles can bind to the active site of the Plasmodium lactate dehydrogenase (pLDH) enzyme. The present work evaluates the antimalarial activity of 1,2,3-triazole derivatives by in silico, in vitro, and in vivo studies. Preliminary in silico ADMET studies of the compounds demonstrated good pharmacokinetic properties. In silico docking analysis against LDH of Plasmodium berghei (PbLDH) showed that all compounds presented interactions with the catalytic residue in the active site and affinity similar to that presented by chloroquine; the most common antimalarial drug. Cytotoxicity and hemolysis by these derivatives were evaluated in vitro. The compounds 1, 2, 5, 8, and 9 proved to be non-cytotoxic in the performed tests. In vivo antimalarial activity was evaluated using mice infected with Plasmodium berghei NK65. The five compounds tested exhibited antimalarial activity until nine days post-infection. The compound 5 showed promising activities, with about 70% parasitemia suppression. Considering the in vitro and in vivo studies, we believe the compound 5 to be the most promising molecule for further studies in antimalarial chemotherapy.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacocinética , Triazóis/síntese química , Triazóis/farmacocinética , Animais , Antimaláricos/toxicidade , Domínio Catalítico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Feminino , Hemólise/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/química , Macrófagos Peritoneais/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Simulação de Acoplamento Molecular , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/enzimologia , Estrutura Quaternária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Relação Estrutura-Atividade , Triazóis/toxicidade
6.
Biomed Mater ; 16(6)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34544052

RESUMO

Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Tensoativos/química , Administração Cutânea , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/química , Combinação Arteméter e Lumefantrina/farmacocinética , Humanos , Pele/metabolismo , Solubilidade , Suínos
7.
Daru ; 29(1): 223-239, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738722

RESUMO

OBJECTIVE: Review and assess pharmaceutical and clinical characteristics of chloroquine including high-performance liquid chromatography (HPLC)-based methods used to quantify the drug in pharmaceutical products and biological samples. EVIDENCE ACQUISITION: A literature review was undertaken on the PubMed, Science Direct, and Scielo databases using the following keywords related to the investigated subject: 'chloroquine', 'analytical methods', and 'HPLC'. RESULTS: For more than seven decades, chloroquine has been used to treat malaria and some autoimmune diseases, such as lupus erythematosus and rheumatoid arthritis. There is growing interest in chloroquine as a therapeutic alternative in the treatment of HIV, Q fever, Whipple's disease, fungal, Zika, Chikungunya infections, Sjogren's syndrome, porphyria, chronic ulcerative stomatitis, polymorphic light eruption, and different types of cancer. HPLC coupled to UV detectors is the most employed method to quantify chloroquine in pharmaceutical products and biological samples. The main chromatographic conditions used to identify and quantify chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed. CONCLUSION: Research findings reported in this article may facilitate the repositioning, quality control, and biological monitoring of chloroquine in modern pharmaceutical dosage forms and treatments.


Assuntos
Antimaláricos/análise , Cloroquina/análise , Cromatografia Líquida de Alta Pressão/métodos , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Cloroquina/química , Cloroquina/farmacocinética , Cloroquina/uso terapêutico , Humanos
8.
Homeopathy ; 110(3): 174-179, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33662994

RESUMO

BACKGROUND: Artesunate (ATS) is a semi-synthetic compound derived from artemisinin, which is widely accepted in the treatment of malaria. However, there is evidence that ATS, under certain in vitro conditions, induces several impairments to normal cell functions. Canova (CA) is a Brazilian homeopathic formulation indicated for patients with depressed immune system. CA shows both in vitro and in vivo protective effects against mutagenic/carcinogenic compounds. Therefore, we aimed to assess in vitro the cytoprotective effects of CA against the cytotoxicity of ATS in Vero cells. METHODS: Viability of Vero cells exposed to ATS was assessed by MTT assay, whereas the anti-cytotoxic effect of CA was evaluated by apoptosis and necrosis quantification with fluorescent dyes. RESULTS: After 24 hours of ATS treatment, a reduction in cell viability was observed at 32 and 64 µg/mL, the latter being statistically significant (p < 0.05) in relation to the negative control. The concentration of 64 µg/mL was chosen for the subsequent experiments. ATS significantly induced both apoptosis and necrosis in Vero cells in relation to controls (p < 0.01). We also observed a statistically significant decrease in the number of apoptotic cells observed in the CA 16% + ATS co-treatment compared with ATS treatment (p < 0.01). Treatment with CA alone also had no influence on either type of cell death. CONCLUSION: Our results demonstrated that ATS is cytotoxic in the assessed conditions. However, such cytotoxicity was attenuated when the cells were treated simultaneously with ATS and CA.


Assuntos
Artesunato/farmacologia , Venenos de Crotalídeos/farmacologia , Citoproteção , Extratos Vegetais/farmacologia , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/farmacocinética , Artesunato/uso terapêutico , Brasil , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Venenos de Crotalídeos/farmacocinética , Homeopatia/métodos , Homeopatia/normas , Humanos , Extratos Vegetais/farmacocinética
9.
Curr Drug Metab ; 22(2): 127-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397251

RESUMO

BACKGROUND: Infections and inflammation lead to a downregulation of drug metabolism and kinetics in experimental animals. These changes in the expression and activities of drug-metabolizing enzymes may affect the effectiveness and safety of pharmacotherapy of infections and inflammatory conditions. OBJECTIVE: In this review, we addressed the available evidence on the effects of malaria on drug metabolism activity and kinetics in rodents and humans. RESULTS: An extensive literature review indicated that infection by Plasmodium spp consistently decreased the activity of hepatic Cytochrome P450s and phase-2 enzymes as well as the clearance of a variety of drugs in mice (lethal and non-lethal) and rat models of malaria. Malaria-induced CYP2A5 activity in the mouse liver was an exception. Except for paracetamol, pharmacokinetic trials in patients during acute malaria and in convalescence corroborated rodent findings. Trials showed that, in acute malaria, clearance of quinine, primaquine, caffeine, metoprolol, omeprazole, and antipyrine is slower and that AUCs are greater than in convalescent individuals. CONCLUSION: Notwithstanding the differences between rodent models and human malaria, studies in P. falciparum and P. vivax patients confirmed rodent data showing that CYP-mediated clearance of antimalarials and other drugs is depressed during the symptomatic disease when rises in levels of acute-phase proteins and inflammatory cytokines occur. Evidence suggests that inflammatory cytokines and the interplay between malaria-activated NF-kB-signaling and cell pathways controlling phase 1/2 enzyme genes transcription mediate drug metabolism changes. The malaria-induced decrease in drug clearance may exacerbate drug-drug interactions, and the occurrence of adverse drug events, particularly when patients are treated with narrow-margin-of-safety medicines.


Assuntos
Antimaláricos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Vias de Eliminação de Fármacos , Malária , Animais , Humanos , Inativação Metabólica , Malária/tratamento farmacológico , Malária/metabolismo , Taxa de Depuração Metabólica , Roedores
10.
Rev Saude Publica ; 54: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638884

RESUMO

Chloroquine (CQ) and its analog hydroxychloroquine (HCQ) were recently included in several clinical trials as potential prophylactic and therapeutic options for SARS-COV-2 infection/covid-19. However, drug effectiveness in preventing, treating, or slowing the progression of the disease is still unknown. Despite some initial promising in vitro results, rigorous pre-clinical animal studies and randomized clinical trials have not been performed yet. On the other hand, while the potential effectiveness of CQ/HCQ is, at best, hypothetical, their side effects are factual and most worrisome, particularly when considering vulnerable groups of patients being treated with these drugs. in this comment, we briefly explain the possible mechanisms of action of CQ/HCQ for treating other diseases, possible actions against covid-19, and their potent side effects, in order to reinforce the necessity of evaluating the benefit-risk balance when widely prescribing these drugs for SARS-COV-2 infection/covid-19. We conclude by strongly recommending against their indiscriminate use.


Assuntos
Antimaláricos/farmacologia , Betacoronavirus , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/farmacologia , Pneumonia Viral/tratamento farmacológico , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Betacoronavirus/efeitos dos fármacos , COVID-19 , Cloroquina/efeitos adversos , Cloroquina/farmacocinética , Contraindicações de Medicamentos , Humanos , Hidroxicloroquina/efeitos adversos , Hidroxicloroquina/farmacocinética , Pandemias , Medição de Risco , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
11.
Curr Drug Discov Technol ; 17(5): 670-681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31438828

RESUMO

BACKGROUND: Malaria is still a dangerous disease that impacts specifically Africa, Asia, and Latin America. The development of therapies to overcome the parasite infection is an important challenge nowadays. The medicine primaquine (PQ) is used in the treatment, although several side effects and low oral bioavailability are reported. OBJECTIVE: This work focused on the preparation and characterization of a complex between PQ and 2- hydroxypropyl-ß-cyclodextrin (HPCD), besides performing release tests of this formulation. METHODS: PQ:HPCD complexes were prepared at 1:1 and 1:2 molar ratios, by the lyophilization method. The association between PQ and HPCD was tested using UV-vis, infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy and NMR techniques (chemical shift, Job Plot, DOSY, and ROESY). Tests were also conducted to evaluate drug release before and after complexation with HPCD. RESULTS: Results showed that there was a weak interaction of PQ with HPCD, forming non-inclusion complexes. These results were supported by FTIR results and spatial correlations between hydrogens from PQ with the external HPCD hydrogens. A 1:2 PQ:HPCD preferred molar ratio was determined by DSC and Job Plot experiments and the time to release 96% of the drug was 21.2 h slower after complexation. CONCLUSION: Conclusion indicate that PQ interacts poorly with HPCD, probably due to its hydrophilic character, as well as to its interaction with the external rim of HPCD. Our results demonstrate that there was a significant improvement in the release time after the complexation process, which could lead to an increase in the activity of the drug.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Antimaláricos/farmacocinética , Composição de Medicamentos/métodos , Excipientes/química , Primaquina/farmacocinética , Administração Oral , Antimaláricos/química , Antimaláricos/uso terapêutico , Disponibilidade Biológica , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Malária/tratamento farmacológico , Primaquina/química , Primaquina/uso terapêutico , Solubilidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-31844010

RESUMO

Mefloquine shows a high capacity to bind plasma proteins, which influences the amount of drug in erythrocytes. The study investigated the association of lipids levels with plasma concentrations of mefloquine and carboxy-mefloquine in 85 Brazilian patients with uncomplicated falciparum malaria. There were no significant associations between the total cholesterol or triglycerides with plasma concentrations of mefloquine and of carboxy-mefloquine. Lipoprotein levels explained 25.68% and 18.31% of mefloquine and carboxy-mefloquine plasma concentrations, respectively.


Assuntos
Antimaláricos/sangue , Artesunato/sangue , Malária Falciparum/tratamento farmacológico , Mefloquina/análogos & derivados , Mefloquina/sangue , Plasmodium falciparum/efeitos dos fármacos , Adulto , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artesunato/farmacocinética , Artesunato/farmacologia , Biotransformação , Brasil , HDL-Colesterol/sangue , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Quimioterapia Combinada , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Masculino , Mefloquina/farmacocinética , Mefloquina/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Índice de Gravidade de Doença , Triglicerídeos/sangue
13.
Rev. saúde pública (Online) ; 54: 68, 2020. graf
Artigo em Inglês | BBO - Odontologia, LILACS | ID: biblio-1127241

RESUMO

ABSTRACT Chloroquine (CQ) and its analog hydroxychloroquine (HCQ) were recently included in several clinical trials as potential prophylactic and therapeutic options for SARS-COV-2 infection/covid-19. However, drug effectiveness in preventing, treating, or slowing the progression of the disease is still unknown. Despite some initial promising in vitro results, rigorous pre-clinical animal studies and randomized clinical trials have not been performed yet. On the other hand, while the potential effectiveness of CQ/HCQ is, at best, hypothetical, their side effects are factual and most worrisome, particularly when considering vulnerable groups of patients being treated with these drugs. in this comment, we briefly explain the possible mechanisms of action of CQ/HCQ for treating other diseases, possible actions against covid-19, and their potent side effects, in order to reinforce the necessity of evaluating the benefit-risk balance when widely prescribing these drugs for SARS-COV-2 infection/covid-19. We conclude by strongly recommending against their indiscriminate use.


Assuntos
Humanos , Pneumonia Viral/tratamento farmacológico , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Betacoronavirus/efeitos dos fármacos , Hidroxicloroquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/efeitos adversos , Cloroquina/farmacocinética , Medição de Risco , Pandemias , Contraindicações de Medicamentos , SARS-CoV-2 , COVID-19 , Hidroxicloroquina/efeitos adversos , Hidroxicloroquina/farmacocinética , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética
14.
Malar J ; 18(1): 325, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547827

RESUMO

BACKGROUND: Activation of hypnozoites of vivax malaria causes multiple clinical relapses, which contribute to the Plasmodium vivax burden and continuing transmission. Artemisinin-based combination therapy (ACT) is effective against blood-stage P. vivax but requires co-administration with primaquine to achieve radical cure. The therapeutic efficacy of primaquine depends on the generation of a therapeutically active metabolite via cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 metabolism has been associated with primaquine treatment failure. This study investigated the association between impaired CYP2D6 genotypes, drug-exposure to the long-acting ACT component (schizonticidal drugs) and tolerance and efficacy. METHODS: Adult patients with acute vivax malaria were enrolled in a recently completed trial and treated with artesunate-mefloquine, chloroquine or artemether-lumefantrine. All received concomitant primaquine (0.5 mg/kg/day for 7-9 days). The association between efficacy and safety and drug exposure was explored using area-under-the-curve (AUC) and half-life (t1/2) estimates obtained by non-compartmental analysis of the long half-life drugs. Parasite recurrences by day 63 were categorized as related relapses or re-infections/unrelated hypnozoite activation by genotyping three microsatellite loci and two polymorphic loci of merozoite surface antigen-1. The CYP2D6 genotype was identified with Taqman assays by real-time PCR to 9 polymorphisms (8 SNPs and one deletion). Impaired CYP2D6 activity was inferred using the Activity Score System. RESULTS: Most recurrences in the ASMQ (67%), CQ (80%) and AL (85%) groups were considered related relapses. Eight of nine (88.9%) of the patients with impaired CYP2D6 activity relapsed with related parasite compared to 18/25 (72%) with normal activity (RR = 1.23, 0.88; 1.72, p = 0.40). There were no associations between the measured PK parameters and recurrence. Patients with longer chloroquine half-lives had more pruritus (RR = 1.09, 1.03; 1.14, p = 0.001). Higher CQ AUCs were associated with reduced falls in haemoglobin by day 14 (Coef - 0.02, - 0.005; - 0.03, p = 0.01). All regimens were well tolerated. CONCLUSION: Genotyping of P. vivax showed that activation of related (homologous) hypnozoites was the most frequent cause of recurrence. The high proportion of the impaired CYP2D6 activity among patients with recurrent infections suggests that slow primaquine metabolism might influence related relapse rates in Brazil among patients receiving primaquine for radical cure, although confirmatory studies are needed. There was no association between drug exposure of the long-acting ACT component (schizonticidal drugs) and risk of related relapse. ACT was well tolerated. These results provide further re-assurance about the safety and efficacy of ACT when combined with short course primaquine to treat uncomplicated malaria vivax in Brazil. Trial registration RBR-79s56s ( http://www.ensaiosclinicos.gov.br/rg/RBR-79s56s/ ).


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Primaquina/farmacologia , Adulto , Idoso , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Brasil , Cloroquina/farmacocinética , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Primaquina/farmacocinética , Adulto Jovem
15.
Int J Nanomedicine ; 14: 10165-10178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32021159

RESUMO

INTRODUCTION: The surface charge of nanoparticles, such as nanospheres (NS) and nanocapsules (NC), has been studied with the purpose of improving the in vivo performance of drugs. The aim of this study was to develop, characterize, and evaluate the in vitro antimalarial efficacy of NCP80 and NSP80 (polysorbate coated) or NCEUD and NSEUD (prepared with Eudragit RS 100) loading quinine (QN). METHODS: Formulations were prepared by the nanoprecipitation method, followed by wide physicochemical characterization. Antimalarial activity in Plasmodium berghei-infected mice and populational pharmacokinetics (PopPK) in rats were evaluated. RESULTS: The formulations showed a nanometric range (between 138 ± 3.8 to 201 ± 23.0 nm), zeta potential (mV) of -33.1 ± 0.7 (NCP80), -30.5 ± 1 (UNCP80), -25.5 ± 1 (NSP80), -20 ± 0.3 (UNSP80), 4.61 ± 1 (NCEUD), 14.1 ± 0.9 (UNCEUD), 2.86 ± 0.3 (NSEUD) and 2.84 ± 0.6 (UNSEUD), content close to 100%, and good QN protection against UVA light. There was a twofold increase in the penetration of QN into infected erythrocytes with NC compared to that with NS. There was a significant increase in t1/2 for all NC evaluated compared to that of Free-QN, due to changes in Vdss. PopPK analysis showed that NCP80 acted as a covariate to Q (intercompartmental clearance) and V2 (volume of distribution in the peripheral compartment). For NCEUD, V1 and Q were modified after QN nanoencapsulation. Regarding in vivo efficacy, NCEUD increased the survival of mice unlike Free-QN. CONCLUSION: Cationic nanocapsules modified the pharmacology of QN, presenting a potential alternative for malaria treatment.


Assuntos
Antimaláricos/farmacocinética , Portadores de Fármacos/farmacocinética , Malária/tratamento farmacológico , Nanocápsulas/química , Quinina/farmacocinética , Resinas Acrílicas/química , Animais , Antimaláricos/química , Portadores de Fármacos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Malária/mortalidade , Masculino , Camundongos , Nanosferas/química , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Polissorbatos/química , Quinina/química , Ratos Wistar , Propriedades de Superfície
16.
J Pharm Biomed Anal ; 165: 304-314, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30579231

RESUMO

Malaria is a worldwide health issue, with 216 million cases reported in 2016. Due to the widespread resistance of Plasmodium falciparum to conventional drugs, the first line treatment recommended by World Health Organization for uncomplicated malaria is artemisinin-based combined therapy (ACT), which combines two drugs with different mechanisms of action. The association of artemether and lumefantrine is the most common ACT used in the clinical practice. However, there have been reports of clinical artemisinin and derivatives partial resistance, which is defined as delayed parasite clearance. In this context, the monitoring of drug concentration in biological matrices is essential to evaluate treatment response, the need of dose adjustment and the occurrence of dose dependent adverse effects. Furthermore, it is also important for pharmacokinetic studies and in the development of generic and similar drugs. Determination of antimalarial drugs in biological matrices requires a sample pre-treatment, which involves drug extraction from the matrix and analyte concentration. The most used techniques are protein precipitation (PP), liquid-liquid extraction (LLE) and solid phase extraction (SPE). Subsequently, a liquid chromatography step is usually applied to separate interferences that could be extracted along with the analyte. Finally, the analytes are detected employing techniques that must be selective and sensitive, since the analyte might be present in trace levels. The most used approach for detection is tandem mass spectrometry (MS-MS), but ultraviolet (UV) is also employed in several studies. In this article, a review of the scientific peer-review literature dealing with validated quantitative analysis of artemether and/or lumefantrine in biological matrices, from 2000 to 2018, is presented.


Assuntos
Antimaláricos/análise , Combinação Arteméter e Lumefantrina/análise , Técnicas de Química Analítica/métodos , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/farmacocinética , Combinação de Medicamentos , Monitoramento de Medicamentos/métodos , Humanos , Malária Falciparum/tratamento farmacológico , Sensibilidade e Especificidade
17.
J Pharm Sci ; 108(3): 1177-1188, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30336154

RESUMO

According to the most recent World Health Organization statistics, malaria infected approximately 219 million people in 2017, with an estimate of 435,000 deaths (World Health Organization, 2018). Communities isolated from cities are the most deprived of access to the necessary hospital facilities. Herein we report the development of a transdermal bioadhesive containing artemether (ART), an alternative, potentially lifesaving, treatment regimen for malaria in low-resource settings. Bioadhesives were prepared from an aqueous blend of hydroxyethylcellulose (4.5% w/w), ART, propoxylated-ethoxylated-cetyl-alcohol, polysorbate 80, propyleneglycol, glycerine, mineral oil, and oleic acid. In this study, the average pore size of bioadhesive 5.5b was 52.6 ± 15.31 µm. Differential scanning calorimetry and thermogravimetric analyses confirm the thermal stability of ART bioadhesives at room temperature. Tensile tests indicated good mechanical properties for bioadhesive 5.5b, when compared to 5.5a, where 5.5b showed elastic modulus 0.19 MPa, elongation at break 204%, tensile stress 0.31 MPa, tensile strength at break 0.23 MPa. Bioadhesion assays suggested that formulations containing surfactants had higher detachment forces. Permeation studies demonstrated that the best outcome was achieved with a bioadhesive containing 25 mg ART (5.5b) that after 24 h released 6971 ± 125 µg, which represents approximately 28% of drug permeation. Data reported presents a promising candidate for a new antimalarial transdermal formulation.


Assuntos
Antimaláricos/farmacocinética , Artemeter/farmacocinética , Malária Falciparum/tratamento farmacológico , Pele/metabolismo , Adesivo Transdérmico , Administração Cutânea , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Artemeter/administração & dosagem , Artemeter/química , Artemisia annua/química , Criança , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Malária Falciparum/parasitologia , Permeabilidade , Suínos
18.
Malar J ; 17(1): 482, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567541

RESUMO

BACKGROUND: Plasmodium falciparum has shown multidrug resistance, leading to the necessity for the development of new drugs with novel targets, such as the synthesis of isoprenic precursors, which are excellent targets because the pathway is different in several steps when compared with the human host. Naphthoquinone derivatives have been described as potentially promising for the development of anti-malarial leader molecules. In view of that, the focus in this work is twofold: first, evaluate the in vitro naphthoquinone antiplasmodial activity and cytotoxicity; secondly, investigate one possible action mechanism of two derivatives of hydroxy-naphthoquinones. RESULTS: The two hydroxy-naphthoquinones derivatives have been tested against P. falciparum in vitro, using strains of parasites chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2), causing 50% inhibition of parasite growth with concentrations that varied from 7 to 44.5 µM. The cell viability in vitro against RAW Cell Line displayed IC50 = 483.5 and 714.9 µM, whereas, in primary culture tests using murine macrophages, IC50 were 315.8 and 532.6 µM for the two selected compounds, causing no haemolysis at the doses tested. The in vivo acute toxicity assays exhibited a significant safety margin indicated by a lack of systemic and behavioural toxicity up to 300 mg/kg. It is suggested that this drug seems to inhibit the biosynthesis of isoprenic compounds, particularly the menaquinone and tocopherol. CONCLUSIONS: These derivatives have a high potential for the development of new anti-malarial drugs since they showed low toxicity associated to a satisfactory antiplasmodial activity and possible inhibition of a metabolic pathway distinct from the pathways found in the mammalian host.


Assuntos
Compostos de Anilina/farmacologia , Antimaláricos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Naftoquinonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Terpenos/metabolismo , Compostos de Anilina/farmacocinética , Antimaláricos/farmacocinética , Malária Falciparum/tratamento farmacológico , Naftoquinonas/farmacocinética , Testes de Sensibilidade Parasitária , Plasmodium falciparum/metabolismo
19.
Malar J ; 17(1): 268, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012152

RESUMO

BACKGROUND: A fixed-dose combination of mefloquine with artesunate was evaluated in cases of falciparum malaria in the Brazilian Amazon basin with acceptable efficacy, safety and tolerability. However, there are no data on the pharmacokinetics of mefloquine in this coformulation in Brazil, which is valuable to evaluate whether Plasmodium is exposed to an effective concentration of the drug. METHODS: A prospective, single-arm study was conducted in male patients with slide-confirmed infection by Plasmodium falciparum using two tablets of a fixed-dose combination of artesunate (100 mg) and mefloquine base (200 mg) once daily and over 3 consecutive days. Serial blood samples were collected at admission and throughout 672 h post-administration of the drugs. Mefloquine was measured in each blood sample by high-performance liquid chromatography. The pharmacokinetic parameters were determined by non-compartmental analysis. RESULTS: A total of 61 patients were enrolled in the study and 450 whole blood samples were collected for mefloquine measurement. The mefloquine half-life was 10.25 days, the maximum concentration (Cmax) was 2.53 µg/ml, the area-under-the-curve (AUC0-∞) was 359 µg/ml h, the observed clearance (Cl/f) was 0.045 l/kg/h and the volume of distribution (V/f) was 14.6 l/kg. Mefloquine concentrations above 0.5 µg/ml were sustained for a mean time of 9.2 days. CONCLUSION: The pharmacokinetic parameters of mefloquine determined in the study suggest an adequate exposure of parasite to mefloquine in the multiple oral dose regimen of the fixed dose combination of mefloquine and artesunate.


Assuntos
Antimaláricos/farmacocinética , Mefloquina/farmacocinética , Adulto , Idoso , Antimaláricos/administração & dosagem , Artesunato/administração & dosagem , Brasil , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Humanos , Malária Falciparum , Masculino , Mefloquina/administração & dosagem , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos dos fármacos , Estudos Prospectivos , Adulto Jovem
20.
Rev Soc Bras Med Trop ; 50(4): 499-505, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28954071

RESUMO

INTRODUCTION:: Primaquine (PQ) diphosphate is an 8-aminoquinoline antimalarial drug with unique therapeutic properties. It is the only drug that prevents relapses of Plasmodium vivax or Plasmodium ovale infections. In this study, a fast, sensitive, cost-effective, and robust method for the extraction and high-performance liquid chromatography with diode array ultraviolet detection (HPLC-DAD-UV ) analysis of PQ in the blood plasma was developed and validated. METHODS:: After plasma protein precipitation, PQ was obtained by liquid-liquid extraction and analyzed by HPLC-DAD-UV with a modified-silica cyanopropyl column (250mm × 4.6mm i.d. × 5µm) as the stationary phase and a mixture of acetonitrile and 10mM ammonium acetate buffer (pH = 3.80) (45:55) as the mobile phase. The flow rate was 1.0mL·min-1, the oven temperature was 50OC, and absorbance was measured at 264nm. The method was validated for linearity, intra-day and inter-day precision, accuracy, recovery, and robustness. The detection (LOD) and quantification (LOQ) limits were 1.0 and 3.5ng·mL-1, respectively. The method was used to analyze the plasma of female DBA-2 mice treated with 20mg.kg-1 (oral) PQ diphosphate. RESULTS:: By combining a simple, low-cost extraction procedure with a sensitive, precise, accurate, and robust method, it was possible to analyze PQ in small volumes of plasma. The new method presents lower LOD and LOQ limits and requires a shorter analysis time and smaller plasma volumes than those of previously reported HPLC methods with DAD-UV detection. CONCLUSIONS:: The new validated method is suitable for kinetic studies of PQ in small rodents, including mouse models for the study of malaria.


Assuntos
Antimaláricos/sangue , Primaquina/sangue , Animais , Antimaláricos/farmacocinética , Cromatografia Líquida de Alta Pressão , Feminino , Camundongos , Primaquina/farmacocinética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA