Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(3): e57523, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520471

RESUMO

Sarcomas are rare and heterogeneous mesenchymal tumors affecting both pediatric and adult populations with more than 70 recognized histologies. Doxorubicin and ifosfamide have been the main course of therapy for treatment of sarcomas; however, the response rate to these therapies is about 10-20% in metastatic setting. Toxicity with the drug combination is high, response rates remain low, and improvement in overall survival, especially in the metastatic disease, remains negligible and new agents are needed. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by MK1775 has been reported to enhance the cytotoxic effect of DNA damaging agents in different types of carcinomas. In this study we investigated the therapeutic efficacy of MK1775 in various sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo both alone and in combination with gemcitabine, which is frequently used in the treatment of sarcomas. Our data demonstrate that MK1775 treatment as a single agent at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. Additionally, MK1775 significantly enhances the cytotoxic effect of gemcitabine in sarcoma cells lines with different p53 mutational status. In patient-derived bone and soft tissue sarcoma samples we showed that MK1775 alone and in combination with gemcitabine causes significant apoptotic cell death. Magnetic resonance imaging (MRI) and histopathologic studies showed that MK1775 induces significant cell death and terminal differentiation in a patient-derived xenograft mouse model of osteosarcoma in vivo. Our results together with the high safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent in the treatment of both adult as well as pediatric sarcoma patients.


Assuntos
Antimetabólitos Antineoplásicos , Proteínas de Ciclo Celular/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Neoplasias Femorais/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis , Pirimidinas , Adolescente , Adulto , Animais , Antimetabólitos Antineoplásicos/agonistas , Antimetabólitos Antineoplásicos/farmacologia , Morte Celular , Diferenciação Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Desoxicitidina/agonistas , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Feminino , Neoplasias Femorais/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Osteossarcoma/patologia , Pirazóis/agonistas , Pirazóis/farmacologia , Pirimidinas/agonistas , Pirimidinas/farmacologia , Pirimidinonas , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Blood ; 118(15): 4140-9, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21844567

RESUMO

Mantle cell lymphoma (MCL) usually responds well to initial therapy but is prone to relapses with chemoresistant disease, indicating the need for novel therapeutic approaches. Inhibition of the p53 E3 ligase human homolog of the murine double minute protein-2 (HDM-2) with MI-63 has been validated as one such strategy in wild-type (wt) p53 models, and our genomic and proteomic analyses demonstrated that MI-63 suppressed the expression of the ribonucleotide reductase (RNR) subunit M2 (RRM2). This effect occurred in association with induction of p21 and cell-cycle arrest at G(1)/S and prompted us to examine combinations with the RNR inhibitor 2',2'-difluoro-2'-deoxycytidine (gemcitabine). The regimen of MI-63-gemcitabine induced enhanced, synergistic antiproliferative, and proapoptotic effects in wtp53 MCL cell lines. Addition of exogenous dNTPs reversed this effect, whereas shRNA-mediated inhibition of RRM2 was sufficient to induce synergy with gemcitabine. Combination therapy of MCL murine xenografts with gemcitabine and MI-219, the in vivo analog of MI-63, resulted in enhanced antitumor activity. Finally, synergy was seen with MI-63-gemcitabine in primary patient samples that were found to express high levels of RRM2 compared with MCL cell lines. These findings provide a framework for translation of the rational combination of an HDM-2 and RNR inhibitor to the clinic for patients with relapsed wtp53 MCL.


Assuntos
Antimetabólitos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Indóis , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Ribonucleosídeo Difosfato Redutase/biossíntese , Compostos de Espiro , Animais , Antimetabólitos Antineoplásicos/agonistas , Antimetabólitos Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/agonistas , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Fase G1/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/agonistas , Indóis/farmacologia , Linfoma de Célula do Manto/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fase S/efeitos dos fármacos , Compostos de Espiro/agonistas , Compostos de Espiro/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Exp Cell Res ; 289(1): 27-35, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12941601

RESUMO

5-fluorouracil (5-FU) is used for the treatment of stomach and colon cancer, but many tumors are resistant to this chemotherapeutic agent. 5-FU induces apoptosis of several cancer cell lines, while some chemotherapeutic agents are known to activate the transcriptional factor NF-kappaB, which strongly suppresses apoptosis in vitro. In the present study, we investigated the relationship between activation of NF-kappaB and chemoresistance to 5-FU in human stomach cancer cell lines, NUGC3 (5-FU sensitive) and NUGC3/5FU/L (5-FU resistant). Treatment with 5-FU for 9-12 h caused activation of inducible NF-kappaB in NUGC3/5FU/L cells but not in NUGC3 cells. 5-FU also resulted in an increase in the number of TUNEL-positive cells and enhanced caspase-3 activity 3- to 5-fold in NUGC3 cells but not NUGC3/5FU/L cells. Moreover we also demonstrated that the inhibition of inducible NF-kappaB activation by using a NF-kappaB decoy could induce apoptosis and reduce chemoresistance against 5-FU. Our results suggest that 5-FU chemoresistance can be overcome by inhibition of inducible NF-kappaB activation, and that the use of the NF-kappaB decoy combined with 5-FU treatment is a new molecular and gene therapeutic strategy aimed at treatment of human stomach cancers resistant to 5-FU.


Assuntos
Antimetabólitos Antineoplásicos/agonistas , Carcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/agonistas , NF-kappa B/análogos & derivados , NF-kappa B/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Carcinoma/genética , Carcinoma/metabolismo , Caspase 3 , Caspases/efeitos dos fármacos , Caspases/metabolismo , Sinergismo Farmacológico , Fluoruracila/toxicidade , Humanos , NF-kappa B/metabolismo , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Células Tumorais Cultivadas
4.
Stem Cells ; 18(3): 166-75, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10840069

RESUMO

The combination of 5-fluorouracil (5-FU) and leucovorin has been the unofficial "standard" therapy for patients with colorectal cancer for over a decade. Recently, however, a number of new agents targeted against the enzyme thymidylate synthase have been synthesized and are in various stages of development. The currently available thymidylate synthase inhibitors are discussed. Enormous efforts have been made over the years to improve the efficacy of 5-FU, the most popular of these agents. Biochemical modulation by leucovorin has been the most successful so far. Continuous infusion schedules also appear to be advantageous over bolus administration. However, marked intra- and interpatient variability, combined with nonlinear elimination kinetics and erratic oral bioavailability are relative limitations to further development of 5-FU. New oral 5-FU prodrugs such as UFT, S-1, and Capecitabine may help to overcome some of these difficulties. Eniluracil, a potent inhibitor of the enzyme dihydropyrimidine dehydrogenase, may also help by overcoming potential 5-FU resistance mechanisms, in addition to increasing its bioavailability. Of the antifolate-based inhibitors, Tomudex is in the most advanced stage of development. Similar efficacy with 5-FU and a convenient schedule may suggest a role in future combination regimens. It is quite likely that even the most optimal thymidylate synthase inhibition will have limitations in terms of clinical efficacy. Novel combinations of 5-FU or its analogs with agents that have different mechanisms of action (e.g., oxaliplatin, irinotecan) could provide important new opportunities for improving the outlook of patients with colorectal cancer.


Assuntos
Antimetabólitos Antineoplásicos/agonistas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/fisiopatologia , Fluoruracila/agonistas , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/efeitos dos fármacos , Progressão da Doença , Humanos , Timidilato Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...