Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.124
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869150

RESUMO

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.


Assuntos
Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimologia , Zika virus/enzimologia , Fluxo de Trabalho , RNA Helicases/química , RNA Helicases/metabolismo , Humanos , DNA Helicases/química , DNA Helicases/metabolismo , Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Sítios de Ligação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
2.
Int J Biol Macromol ; 272(Pt 1): 132855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834129

RESUMO

Approximately 3.9 billion individuals are vulnerable to dengue infection, a prevalent cause of tropical diseases worldwide. Currently, no drugs are available for preventing or treating Flavivirus diseases, including Dengue, West Nile, and the more recent Zika virus. The highly conserved Flavivirus NS2B-NS3 protease, crucial for viral replication, is a promising therapeutic target. This study employed in-silico methodologies to identify novel and potentially effective anti-dengue small molecules. A pharmacophore model was constructed using an experimentally validated NS2B-NS3 inhibitor, with the Gunner Henry score confirming the model's validity. The Natural Product Activity and Species Source (NPASS) database was screened using the validated pharmacophore model, yielding a total of 60 hits against the NS2B-NS3 protease. Furthermore, the docking finding reveals that our newly identified compounds from the NPASS database have enhanced binding affinities and established significant interactions with allosteric residues of the target protein. MD simulation and post-MD analysis further validated this finding. The free binding energy was computed in terms of MM-GBSA analysis, with the total binding energy for compound 1 (-57.3 ± 2.8 and - 52.9 ± 1.9 replica 1 and 2) indicating a stronger binding affinity for the target protein. Overall, this computational study identified these compounds as potential hit molecules, and these findings can open up a new avenue to explore and develop inhibitors against Dengue virus infection.


Assuntos
Antivirais , Vírus da Dengue , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica , Proteases Virais
3.
Sci Rep ; 14(1): 13059, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844490

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a "molecular sponge" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.


Assuntos
Nanopartículas , Domínios PDZ , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Nanopartículas/química , COVID-19/virologia , COVID-19/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , Animais , Ligação Proteica
4.
Luminescence ; 39(6): e4792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845344

RESUMO

Favipiravir (FVP) is an oral antiviral drug approved in 2021 for the treatment of COVID-19. It is a pyrazine derivative that can be integrated into anti-viral RNA products to inhibit viral replication. While, adenine is a purine nucleobase that is found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) to generate genetic information. For the first time, the binding mechanism between FVP and adenine was determined using different techniques, including UV-visible spectrophotometry, spectrofluorimetry, synchronous fluorescence (SF) spectroscopy, Fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET), and metal ion complexation. The fluorescence spectra indicated that FVP is bound to adenine via Van der Waals forces and hydrogen bonding through a spontaneous binding process (ΔGο < 0). The quenching mechanism was found to be static. Various temperature settings were used to investigate thermodynamic characteristics, such as binding forces, binding constants, and the number of binding sites. The reaction parameters, including the enthalpy change (ΔHο) and entropy change (ΔSο), were calculated using Van't Hoff's equation. The findings demonstrated that the adenine-FVP binding was endothermic. Furthermore, the results of the experiments revealed that some metal ions (K+, Ca+2, Co+2, Cu+2, and Al+3) might facilitate the binding interaction between FVP and adenine. Slight changes are observed in the FTIR spectra of adenine, indicating the binding interaction between adenine and FVP. This study may be useful in understanding the pharmacokinetic characteristics of FVP and how the drug binds to adenine to prevent any side effects.


Assuntos
Nucleotídeos de Adenina , Amidas , Antivirais , Pirazinas , Termodinâmica , Pirazinas/química , Pirazinas/metabolismo , Amidas/química , Amidas/metabolismo , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Antivirais/química , Antivirais/farmacologia , Antivirais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Espectrofotometria Ultravioleta , Sítios de Ligação , Adenina/química , Adenina/metabolismo
5.
Signal Transduct Target Ther ; 9(1): 144, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853183

RESUMO

Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.


Assuntos
Piridinas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Piridinas/farmacologia , Camundongos , Animais , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/antagonistas & inibidores , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/genética , Antivirais/farmacologia , Antivirais/química , Piperidinas/farmacologia , Piperidinas/química , Camundongos Endogâmicos BALB C , Conformação Proteica , Dibenzocicloeptenos
6.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891954

RESUMO

While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.


Assuntos
Antivirais , Azóis , Proteases 3C de Coronavírus , Isoindóis , Compostos Organosselênicos , Prolina , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Isoindóis/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Azóis/farmacologia , Azóis/química , Prolina/análogos & derivados , Prolina/farmacologia , Prolina/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Células HEK293 , Lactamas , Leucina/análogos & derivados , Ácidos Sulfônicos
7.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892294

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current coronavirus disease pandemic. With the rapid evolution of variant strains, finding effective spike protein inhibitors is a logical and critical priority. Angiotensin-converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS-CoV-2 viral entry, and thus related therapeutic approaches associated with the spike protein-ACE2 interaction show a high degree of feasibility for inhibiting viral infection. Our computer-aided drug design (CADD) method meticulously analyzed more than 260,000 compound records from the United States National Cancer Institute (NCI) database, to identify potential spike inhibitors. The spike protein receptor-binding domain (RBD) was chosen as the target protein for our virtual screening process. In cell-based validation, SARS-CoV-2 pseudovirus carrying a reporter gene was utilized to screen for effective compounds. Ultimately, compounds C2, C8, and C10 demonstrated significant antiviral activity against SARS-CoV-2, with estimated EC50 values of 8.8 µM, 6.7 µM, and 7.6 µM, respectively. Using the above compounds as templates, ten derivatives were generated and robust bioassay results revealed that C8.2 (EC50 = 5.9 µM) exhibited the strongest antiviral efficacy. Compounds C8.2 also displayed inhibitory activity against the Omicron variant, with an EC50 of 9.3 µM. Thus, the CADD method successfully discovered lead compounds binding to the spike protein RBD that are capable of inhibiting viral infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Simulação de Acoplamento Molecular , Descoberta de Drogas/métodos , Ligação Proteica , COVID-19/virologia , Desenho de Fármacos , Internalização do Vírus/efeitos dos fármacos
8.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892306

RESUMO

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , COVID-19/virologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ligação Proteica , Ligantes
9.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892307

RESUMO

Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Extratos Vegetais , Folhas de Planta , SARS-CoV-2 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Folhas de Planta/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , COVID-19/metabolismo , Apoptose/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química
10.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893400

RESUMO

The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of -8.9, -8.7 and -8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , SARS-CoV-2 , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , COVID-19/virologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893512

RESUMO

COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.


Assuntos
Antivirais , Desenho de Fármacos , Alcaloides Indólicos , Simulação de Acoplamento Molecular , Quinazolinas , SARS-CoV-2 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , SARS-CoV-2/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Humanos , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Internalização do Vírus/efeitos dos fármacos , Quinazolinonas
12.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893578

RESUMO

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Assuntos
Antocianinas , Antivirais , Mirtilos Azuis (Planta) , Proteases 3C de Coronavírus , Extratos Vegetais , Inibidores de Proteases , SARS-CoV-2 , Mirtilos Azuis (Planta)/química , Antocianinas/farmacologia , Antocianinas/química , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Glucosídeos
13.
J Mol Model ; 30(7): 217, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888748

RESUMO

CONTEXT: SARS-CoV-2, responsible for COVID-19, has led to over 500 million infections and more than 6 million deaths globally. There have been limited effective treatments available. The study aims to find a drug that can prevent the virus from entering host cells by targeting specific sites on the virus's spike protein. METHOD: We examined 13,397 compounds from the Malaria Box library against two specific sites on the spike protein: the receptor-binding domain (RBD) and a predicted cryptic pocket. Using virtual screening, molecular docking, molecular dynamics, and MMPBSA techniques, they evaluated the stability of two compounds. TCMDC-124223 showed high stability and binding energy in the RBD, while TCMDC-133766 had better binding energy in the cryptic pocket. The study also identified that the interacting residues are conserved, which is crucial for addressing various virus variants. The findings provide insights into the potential of small molecules as drugs against the spike protein.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , Humanos , Sítios de Ligação , Antivirais/química , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica , Domínios Proteicos , COVID-19/virologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
14.
Chem Biol Drug Des ; 103(6): e14566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858134

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic has triggered a significant impact on global public health security, it is urgent to develop effective antiviral drugs. Previous studies have found that binding to ACE2 is a key step in the invasion of SARS-CoV-2 into host cells, so virus invasion can be inhibited by blocking ACE2, but there are few reports on this kind of specific inhibitor. Our previous study found that Harringtonine (HT) can inhibit the entry of SARS-CoV-2 spike pseudovirus into ACE2h cells, but its relatively high cytotoxicity limits its further development. Amino acid modification of the active components can increase their solubility and reduce their cytotoxicity. Therefore, in this study, seven new derivatives were synthesized by amino acid modification of its core structure Cephalotaxine. The target compounds were evaluated by cell viability assay and the SARS-CoV-2 spike pseudovirus entry assay. Compound CET-1 significantly inhibited the entry of pseudovirus into ACE2h cells and showed less cytotoxicity than HT. Molecular docking results showed that CET-1 could bind TYR83, an important residue of ACE2, just like HT. In conclusion, our study provided a novel compound with more potential activity and lower toxicity than HT on inhibiting the SARS-CoV-2 spike pseudovirus infection, which makes it possible to be a lead compound as an antiviral drug in the future.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Tratamento Farmacológico da COVID-19 , Mepesuccinato de Omacetaxina , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/química , Aminoácidos/química , Aminoácidos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , COVID-19/virologia
15.
Chem Biol Drug Des ; 103(6): e14567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858165

RESUMO

BACKGROUND: To explore the anti-tumor and anti-virus key active ingredients of Sini Decoction Plus Ginseng Soup (SNRS) and their mechanisms. METHODS: The main ingredients of SNRS were analyzed by network pharmacology, and quercetin was identified as the key active ingredient. Then, we obtained the targets of quercetin by using Drugbank, PharmMapper, and SwissTargetPrediction databases. Then, the targets of HBV-related hepatocellular carcinoma (HBV-related HCC) were obtained by using Genecards database. In addition, using the gene expression profiles of HBV-related HCC patients in GEO database and the genes with the greatest survival difference in GEPIA 2 database identified the potential targets of quercetin. In addition, the mechanism of potential genes was studied through GO, KEGG analysis, and PPI network. Using AUC and survival analysis to evaluate the diagnostic and prognostic value of cyclin-dependent kinase 1 (CDK1) and CCNB1. Finally, the effects of quercetin on proliferation of Hep3B and HepG2215 cells and the level of CDK1 and CCNB1 were verified in vitro. ELISA was used to measure the expression levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) after the intervention by quercetin for 24 h and 48 h in HepG2215 cell. RESULTS: The first 10 key ingredients of SNRS were identified, and quercetin was the most key ingredient. The 101 potential quercetin targets were identified for the treatment of HBV-related HCC. GO and KEGG showed that 101 potential target enrichment in cancer and cell cycle regulation. By Venn analysis, CDK1 and CCNB1 were intersection targets, which could be used as potential targets for the action of quercetin on HBV-related HCC. Moreover, the expression of CDK1 and CCNB1 was highly expressed in the high-risk group, while the OS rate was low. The 1-year, 3-year and 5-year area under the curve (AUC) curves of CDK1 and CCNB1 were 0.724, 0.676, 0.622 and 0.745, 0.678, 0.634, respectively. Moreover, experimental results also showed that quercetin inhibited cell proliferation and reduced CDK1 expression in Hep3B and HepG2215 cells. The expressions of HBsAg and HBeAg in HepG2215 cell supernatant and cell gradually decreased with the increase of intervention time of quercetin and CDK1 inhibitor. CONCLUSIONS: Quercetin is a key ingredient of anti-HBV-related HCC activity and inhibits HBV replication in SNRS by inhibiting CDK1.


Assuntos
Proteína Quinase CDC2 , Ciclina B1 , Vírus da Hepatite B , Neoplasias Hepáticas , Panax , Quercetina , Replicação Viral , Quercetina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Vírus da Hepatite B/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Panax/química , Replicação Viral/efeitos dos fármacos , Ciclina B1/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Antivirais/farmacologia , Antivirais/química , Células Hep G2
16.
J Enzyme Inhib Med Chem ; 39(1): 2351861, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847308

RESUMO

In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Ftalimidas , SARS-CoV-2 , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Ftalimidas/química , Ftalimidas/farmacologia , Ftalimidas/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Células Vero , Chlorocebus aethiops , SARS-CoV-2/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Modelos Moleculares
17.
Sci Rep ; 14(1): 13130, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849372

RESUMO

Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Peptídeos , Vírus da Dengue/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Dengue/tratamento farmacológico , Dengue/virologia , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Humanos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Simulação por Computador , Ligação Proteica
18.
Sci Rep ; 14(1): 13150, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849399

RESUMO

The ongoing COVID-19 pandemic continues to pose significant challenges worldwide, despite widespread vaccination. Researchers are actively exploring antiviral treatments to assess their efficacy against emerging virus variants. The aim of the study is to employ M-polynomial, neighborhood M-polynomial approach and QSPR/QSAR analysis to evaluate specific antiviral drugs including Lopinavir, Ritonavir, Arbidol, Thalidomide, Chloroquine, Hydroxychloroquine, Theaflavin and Remdesivir. Utilizing degree-based and neighborhood degree sum-based topological indices on molecular multigraphs reveals insights into the physicochemical properties of these drugs, such as polar surface area, polarizability, surface tension, boiling point, enthalpy of vaporization, flash point, molar refraction and molar volume are crucial in predicting their efficacy against viruses. These properties influence the solubility, permeability, and bio availability of the drugs, which in turn affect their ability to interact with viral targets and inhibit viral replication. In QSPR analysis, molecular multigraphs yield notable correlation coefficients exceeding those from simple graphs: molar refraction (MR) (0.9860), polarizability (P) (0.9861), surface tension (ST) (0.6086), molar volume (MV) (0.9353) using degree-based indices, and flash point (FP) (0.9781), surface tension (ST) (0.7841) using neighborhood degree sum-based indices. QSAR models, constructed through multiple linear regressions (MLR) with a backward elimination approach at a significance level of 0.05, exhibit promising predictive capabilities highlighting the significance of the biological activity I C 50 (Half maximal inhibitory concentration). Notably, the alignment of predicted and observed values for Remdesivir's with obs p I C 50 = 6.01 ,pred p I C 50 = 6.01 ( p I C 50 represents the negative logarithm of I C 50 ) underscores the accuracy of multigraph-based QSAR analysis. The primary objective is to showcase the valuable contribution of multigraphs to QSPR and QSAR analyses, offering crucial insights into molecular structures and antiviral properties. The integration of physicochemical applications enhances our understanding of factors influencing antiviral drug efficacy, essential for combating emerging viral strains effectively.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Relação Quantitativa Estrutura-Atividade , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Humanos , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Modelos Lineares
19.
Open Biol ; 14(6): 230363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889796

RESUMO

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Animais , Proteínas 14-3-3/metabolismo , Complexos Multiproteicos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Linhagem Celular
20.
Environ Sci Pollut Res Int ; 31(28): 40851-40872, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837030

RESUMO

The possible impact of antivirals on ecosystems and the emergence of antiviral resistance are the reasons for concern about their environmental release. Consequently, there has been a significant increase in curiosity regarding their presence in both organic and synthetic systems in recent years. The primary objective of this review is to address the void of information regarding the global presence of antiviral drugs in both wastewater and natural water sources. Photocatalytic degradation of pollutants is an eco-friendly, cost-effective method that effectively addresses environmental degradation. The development of efficient photocatalysts remains a significant issue in accelerating the degradation of pollutants, especially when employing solar light. Thus, the development of Z-scheme and S-scheme semiconductor heterojunctions has emerged as a viable method to improve light absorption and enhance the redox capability of photocatalysts. The principles of Z-scheme and S-scheme are reviewed extensively. The degradation route and occurrence of antiviral are discussed briefly. Finally, a short preview of the degradation of antiviral using Z-scheme and S-scheme is also highlighted.


Assuntos
Antivirais , Antivirais/química , Catálise , Poluentes Químicos da Água/química , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...