Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.930
Filtrar
1.
Physiol Rep ; 12(11): e16054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872580

RESUMO

We aimed to determine the relative contribution of hypercapnia and hypoxia to the bradycardic response to apneas. We hypothesized that apneas with hypercapnia would cause greater bradycardia than normoxia, similar to the response seen with hypoxia, and that apneas with hypercapnic hypoxia would induce greater bradycardia than hypoxia or hypercapnia alone. Twenty-six healthy participants (12 females; 23 ± 2 years; BMI 24 ± 3 kg/m2) underwent three gas challenges: hypercapnia (+5 torr end tidal partial pressure of CO2 [PETCO2]), hypoxia (50 torr end tidal partial pressure of O2 [PETO2]), and hypercapnic hypoxia (combined hypercapnia and hypoxia), with each condition interspersed with normocapnic normoxia. Heart rate and rhythm, blood pressure, PETCO2, PETO2, and oxygen saturation were measured continuously. Hypercapnic hypoxic apneas induced larger bradycardia (-19 ± 16 bpm) than normocapnic normoxic apneas (-11 ± 15 bpm; p = 0.002), but had a comparable response to hypoxic (-19 ± 15 bpm; p = 0.999) and hypercapnic apneas (-14 ± 14 bpm; p = 0.059). Hypercapnic apneas were not different from normocapnic normoxic apneas (p = 0.134). After removal of the normocapnic normoxic heart rate response, the change in heart rate during hypercapnic hypoxia (-11 ± 16 bpm) was similar to the summed change during hypercapnia+hypoxia (-9 ± 10 bpm; p = 0.485). Only hypoxia contributed to this bradycardic response. Under apneic conditions, the cardiac response is driven by hypoxia.


Assuntos
Apneia , Bradicardia , Frequência Cardíaca , Hipercapnia , Hipóxia , Humanos , Hipercapnia/fisiopatologia , Feminino , Masculino , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Apneia/fisiopatologia , Adulto , Bradicardia/fisiopatologia , Adulto Jovem , Pressão Sanguínea/fisiologia , Dióxido de Carbono/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R46-R53, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766773

RESUMO

Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.e., elite competitive free-diving humans). Herein, we compare these two diving models and suggest that hematological traits detected in seals reflect species-specific specializations, while hematological traits shared between the two species are fundamental mammalian characteristics. Arterial blood samples were analyzed in elite human free divers (n = 14) during a single, maximal volitional apnea and in juvenile northern elephant seals (n = 3) during rest-associated apnea. Humans and elephant seals had comparable apnea durations (∼6.5 min) and end-apneic arterial Po2 [humans: 40.4 ± 3.0 mmHg (means ± SE); seals: 27.1 ± 5.9 mmHg; P = 0.2]. Despite similar increases in arterial Pco2 (humans: 33 ± 5%; seals: 16.3 ± 5%; P = 0.2), only humans experienced reductions in pH from baseline (humans: 7.45 ± 0.01; seals: 7.39 ± 0.02) to end apnea (humans: 7.37 ± 0.01; seals: 7.38 ± 0.02; P < 0.0001). Hemoglobin P50 was greater in humans compared to elephant seals (29.9 ± 1.5 and 28.7 ± 0.6 mmHg, respectively; P = 0.046). Elephant seals overall had higher carboxyhemoglobin (COHb) levels (5.9 ± 2.6%) compared to humans (0.8 ± 1.2%; P < 0.0001); however, following apnea, COHb was reduced in seals (baseline: 6.1 ± 0.3%; end apnea: 5.6 ± 0.3%) and was slightly elevated in humans (baseline: 0.7 ± 0.1%; end apnea: 0.9 ± 0.1%; P < 0.0002, both comparisons). Our data indicate that during static apnea, seals have reduced hemoglobin P50, greater pH buffering, and increased COHb levels. The differences in hemoglobin P50 are likely due to the differences in the physiological environment between the two species during apnea, whereas enhanced pH buffering and higher COHb may represent traits selected for in elephant seals.NEW & NOTEWORTHY This study uses similar methods and protocols in elite human free divers and northern elephant seals. Using highly conditioned divers (elite free-diving humans) and highly adapted divers (northern elephant seals), we explored which hematological traits are fundamentally mammalian and which may have been selected for. We found differences in P50, which may be due to different physiological environments between species, while elevated pH buffering and carbon monoxide levels might have been selected for in seals.


Assuntos
Apneia , Mergulho , Focas Verdadeiras , Animais , Focas Verdadeiras/sangue , Humanos , Mergulho/fisiologia , Apneia/sangue , Apneia/fisiopatologia , Masculino , Adulto , Feminino , Especificidade da Espécie , Hemoglobinas/metabolismo , Adulto Jovem , Dióxido de Carbono/sangue , Oxigênio/sangue
3.
Am J Physiol Heart Circ Physiol ; 327(1): H140-H154, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700469

RESUMO

Preeclampsia is a risk factor for future cardiovascular diseases. However, the mechanisms underlying this association remain unclear, limiting effective prevention strategies. Blood pressure responses to acute stimuli may reveal cardiovascular dysfunction not apparent at rest, identifying individuals at elevated cardiovascular risk. Therefore, we compared blood pressure responsiveness with acute stimuli between previously preeclamptic (PPE) women (34 ± 5 yr old, 13 ± 6 mo postpartum) and women following healthy pregnancies (Ctrl; 29 ± 3 yr old, 15 ± 4 mo postpartum). Blood pressure (finger photoplethysmography calibrated to manual sphygmomanometry-derived values; PPE: n = 12, Ctrl: n = 12) was assessed during end-expiratory apnea, mental stress, and isometric handgrip exercise protocols. Integrated muscle sympathetic nerve activity (MSNA) was assessed in a subset of participants (peroneal nerve microneurography; PPE: n = 6, Ctrl: n = 8). Across all protocols, systolic blood pressure (SBP) was higher in PPE than Ctrl (main effects of group all P < 0.05). Peak changes in SBP were stressor specific: peak increases in SBP were not different between PPE and Ctrl during apnea (8 ± 6 vs. 6 ± 5 mmHg, P = 0.32) or mental stress (9 ± 5 vs. 4 ± 7 mmHg, P = 0.06). However, peak exercise-induced increases in SBP were greater in PPE than Ctrl (11 ± 5 vs. 7 ± 7 mmHg, P = 0.04). MSNA was higher in PPE than Ctrl across all protocols (main effects of group all P < 0.05), and increases in peak MSNA were greater in PPE than Ctrl during apnea (44 ± 6 vs. 27 ± 14 burst/100 hb, P = 0.04) and exercise (25 ± 8 vs. 13 ± 11 burst/100 hb, P = 0.01) but not different between groups during mental stress (2 ± 3 vs. 0 ± 5 burst/100 hb, P = 0.41). Exaggerated pressor and sympathetic responses to certain stimuli may contribute to the elevated long-term risk for cardiovascular disease in PPE.NEW & NOTEWORTHY Women with recent histories of preeclampsia demonstrated higher systolic blood pressures across sympathoexcitatory stressors relative to controls. Peak systolic blood pressure reactivity was exacerbated in previously preeclamptic women during small muscle-mass exercises, although not during apneic or mental stress stimuli. These findings underscore the importance of assessing blood pressure control during a variety of experimental conditions in previously preeclamptic women to elucidate mechanisms that may contribute to their elevated cardiovascular disease risk.


Assuntos
Apneia , Pressão Sanguínea , Força da Mão , Pré-Eclâmpsia , Estresse Psicológico , Sistema Nervoso Simpático , Humanos , Feminino , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/diagnóstico , Gravidez , Adulto , Estresse Psicológico/fisiopatologia , Apneia/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Exercício Físico , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Estudos de Casos e Controles
4.
Pflugers Arch ; 476(7): 1087-1107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38635058

RESUMO

Functional magnetic resonance imaging (fMRI) suggests that the hypoxic ventilatory response is facilitated by the AMP-activated protein kinase (AMPK), not at the carotid bodies, but within a subnucleus (Bregma -7.5 to -7.1 mm) of the nucleus tractus solitarius that exhibits right-sided bilateral asymmetry. Here, we map this subnucleus using cFos expression as a surrogate for neuronal activation and mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic cells by Cre expression via the tyrosine hydroxylase promoter. Comparative analysis of brainstem sections, relative to controls, revealed that AMPK-α1/α2 deletion inhibited, with right-sided bilateral asymmetry, cFos expression in and thus activation of a neuronal cluster that partially spanned three interconnected anatomical nuclei adjacent to the area postrema: SolDL (Bregma -7.44 mm to -7.48 mm), SolDM (Bregma -7.44 mm to -7.48 mm) and SubP (Bregma -7.48 mm to -7.56 mm). This approximates the volume identified by fMRI. Moreover, these nuclei are known to be in receipt of carotid body afferent inputs, and catecholaminergic neurons of SubP and SolDL innervate aspects of the ventrolateral medulla responsible for respiratory rhythmogenesis. Accordingly, AMPK-α1/α2 deletion attenuated hypoxia-evoked increases in minute ventilation (normalised to metabolism), reductions in expiration time, and increases sigh frequency, but increased apnoea frequency during hypoxia. The metabolic response to hypoxia in AMPK-α1/α2 knockout mice and the brainstem and spinal cord catecholamine levels were equivalent to controls. We conclude that within the brainstem an AMPK-dependent, hypoxia-responsive subnucleus partially spans SubP, SolDM and SolDL, namely SubSol-HIe, and is critical to coordination of active expiration, the hypoxic ventilatory response and defence against apnoea.


Assuntos
Proteínas Quinases Ativadas por AMP , Apneia , Hipóxia , Núcleo Solitário , Animais , Núcleo Solitário/metabolismo , Hipóxia/metabolismo , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Apneia/metabolismo , Apneia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Respiração
5.
Medicina (B Aires) ; 84(2): 359-363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683525

RESUMO

The apnea test, employed for brain death assessment, aims to demonstrate the absence of respiratory drive due to hypercapnia. The tracheal oxygen insufflation apnea test mode (I-AT) involves disconnecting the patient from invasive mechanical ventilation (iMV) for approximately 8 minutes while maintaining oxygenation. This test supports the diagnosis of brain death based on a specified increase in PaCO2. Common complications include hypoxemia and hemodynamic instability, and lung collapse-induced reduction in end-expiratory lung volume (EELV). In our case series utilizing electrical impedance tomography (EIT), we observed that continuous positive airway pressure during the apnea test (CPAP-AT) effectively mitigated lung collapse. This resulted in improved pulmonary strain compared to the disconnection of iMV. These findings suggest the potential benefits of routine CPAP-AT, particularly for potential lung donors, emphasizing the relevance of our study in providing quantitative insights into EELV loss and its association with pulmonary strain and potential lung injury.


La prueba de apnea es una técnica diagnóstica ampliamente utilizada para la evaluación de la muerte cerebral, con el objetivo de demostrar la ausencia de impulso respiratorio debido a la hipercapnia. La variante de la prueba de apnea con insuflación de oxígeno traqueal (I-AT) implica desconectar al paciente de la ventilación mecánica invasiva (iVM) durante aproximadamente 8 minutos, manteniendo la oxigenación mediante un catéter de insuflación. Esta prueba respalda el diagnóstico de muerte cerebral cuando se determina un aumento de la PaCO 2 superior a 20 mmHg en comparación con el valor inicial o un nivel de PaCO 2 superior a 60 mmHg al final de la prueba. En nuestra serie de casos, la implementación de la tomografía de impedancia eléctrica (EIT) reveló que la prueba de apnea con presión positiva continua (CPAPAT) mitiga eficazmente el colapso pulmonar. Este enfoque resulta en una mejora en la tensión pulmonar en comparación con la desconexión de iMV, demostrando su relevancia en el contexto de potenciales donantes de pulmones.


Assuntos
Impedância Elétrica , Medidas de Volume Pulmonar , Humanos , Masculino , Feminino , Medidas de Volume Pulmonar/métodos , Pessoa de Meia-Idade , Apneia/fisiopatologia , Morte Encefálica/fisiopatologia , Morte Encefálica/diagnóstico , Morte Encefálica/diagnóstico por imagem , Adulto , Tomografia/métodos , Pressão Positiva Contínua nas Vias Aéreas , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso
6.
Eur J Appl Physiol ; 124(7): 2183-2192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441687

RESUMO

Cardiovascular responses to diving are characterized by two opposing responses: tachycardia resulting from exercise and bradycardia resulting from the apnea. The convergence of bradycardia and tachycardia may determine the cardiovascular responses to diving. The purpose of this study was to investigate the interaction of breath holding and muscle mechanoreflex on cardiovascular responses in breath-hold divers (BHDs) and non-BHDs. We compared the cardiovascular responses to combined apnea and the mechanoreflex in BHDs and non-BHDs. All participants undertook three trials-apnea, passive leg cycling (PLC), and combined trials-for 30 s after rest. Cardiovascular variables were measured continuously. Nine BHD (male:female, 4:5; [means ± SD] age, 35 ± 6 years; height, 168.6 ± 4.6 cm; body mass, 58.4 ± 5.9 kg) and eight non-BHD (male:female, 4:4; [means ± SD] age, 35 ± 7 years; height, 163.9 ± 9.1 cm; body mass, 55.6 ± 7.2 kg) participants were included. Compared to the resting baseline, heart rate (HR) and cardiac output (CO) significantly decreased during the combined trial in the BHD group, while they significantly increased during the combined trials in the non-BHD group (P < 0.05). Changes in the HR and CO were significantly lower in the BHD group than in the non-BHD group in the combined trial (P < 0.05). These results suggest that bradycardia with apnea in BHDs is prioritized over tachycardia with the mechanoreflex, whereas that in non-BHDs is not. This finding implies that diving training changes the interaction between apnea and the mechanoreflex in cardiovascular control.


Assuntos
Suspensão da Respiração , Mergulho , Frequência Cardíaca , Humanos , Masculino , Feminino , Adulto , Mergulho/fisiologia , Frequência Cardíaca/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Apneia/fisiopatologia , Reflexo/fisiologia , Débito Cardíaco/fisiologia , Reflexo de Mergulho/fisiologia , Pressão Sanguínea/fisiologia
7.
Eur J Appl Physiol ; 124(7): 2057-2067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38393417

RESUMO

The human spleen acts as a reservoir for red blood cells, which is mobilized into the systemic circulation during various conditions such as hypoxia and physical exertion. Cross-country (XC) skiers, renowned for their exceptional aerobic capacity, are regularly exposed to high-intensity exercise and local oxygen deficits. We investigated a putative dose-dependent relationship between splenic contraction and concomitant hemoglobin concentration ([Hb]) elevation across four exercise intensities in well-trained XC skiers. Fourteen male XC skiers voluntarily participated in a 2-day protocol, encompassing a serial apnea test and a V ˙ O2max test (day 1), followed by three submaximal exercise intensities on a roller skiing treadmill corresponding to 55, 70, and 85% of V ˙ O2max (day 2). Spleen volume was measured via ultrasonic imaging, and venous blood samples were used to determine [Hb] levels. Baseline spleen volume was similar (266(35) mL) for all conditions (NS). Notably, all conditions induced significant splenic contractions and transient [Hb] elevations. The V ˙ O2max test exhibited the most pronounced splenic contraction (35.8%, p < 0.001) and a [Hb] increase of 8.1%, while the 85% exercise intensity led to 27.1% contraction and the greatest [Hb] increase (8.3%, < 0.001) compared to baseline. The apnea test induced relatively smaller responses (splenic contraction: 20.4%, [Hb] = 3.3%, p < 0.001), akin to the response observed at the 70% exercise intensity (splenic contraction = 23%, [Hb] = 6.4%, p < 0,001) and 55% (splenic contraction = 20.0%, [Hb] = 4.8%, p < 0.001). This study shows a discernible dose-dependent relationship between splenic contraction and [Hb] increase with levels of exercise, effectively distinguishing between submaximal and maximal exercise intensity.


Assuntos
Hemoglobinas , Esqui , Baço , Humanos , Masculino , Baço/diagnóstico por imagem , Hemoglobinas/metabolismo , Esqui/fisiologia , Adulto , Exercício Físico/fisiologia , Apneia/fisiopatologia , Apneia/sangue , Consumo de Oxigênio/fisiologia , Contração Muscular/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
8.
Anaesthesia ; 79(6): 576-582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38100148

RESUMO

High-flow nasal oxygen can be administered at induction of anaesthesia for the purposes of pre-oxygenation and apnoeic oxygenation. This intervention is claimed to enhance carbon dioxide elimination during apnoea, but the extent to which this occurs remains poorly quantified. The optimal nasal oxygen flow rate for gas exchange is also unknown. In this study, 114 patients received pre-oxygenation with high-flow nasal oxygen at 50 l.min-1. At the onset of apnoea, patients were allocated randomly to receive one of three nasal oxygen flow rates: 0 l.min-1; 70 l.min-1; or 120 l.min-1. After 4 minutes of apnoea, all oxygen delivery was ceased, tracheal intubation was performed, and oxygen delivery was recommenced when SpO2 was 92%. Mean (SD) PaCO2 rise during the first minute of apnoea was 1.39 (0.39) kPa, 1.41 (0.29) kPa, and 1.26 (0.38) kPa in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, respectively; p = 0.16. During the second, third and fourth minutes of apnoea, mean (SD) rates of rise in PaCO2 were 0.34 (0.08) kPa.min-1, 0.36 (0.06) kPa.min-1 and 0.37 (0.07) kPa.min-1 in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, respectively; p = 0.17. After 4 minutes of apnoea, median (IQR [range]) arterial oxygen partial pressures in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups were 24.5 (18.6-31.4 [12.3-48.3]) kPa; 36.6 (28.1-43.8 [9.8-56.9]) kPa; and 37.6 (26.5-45.4 [11.0-56.6]) kPa, respectively; p < 0.001. Median (IQR [range]) times to desaturate to 92% after the onset of apnoea in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, were 412 (347-509 [190-796]) s; 533 (467-641 [192-958]) s; and 531 (462-681 [326-1007]) s, respectively; p < 0.001. In conclusion, the rate of carbon dioxide accumulation in arterial blood did not differ significantly between apnoeic patients who received high-flow nasal oxygen and those who did not.


Assuntos
Apneia , Oxigenoterapia , Oxigênio , Troca Gasosa Pulmonar , Humanos , Apneia/terapia , Apneia/fisiopatologia , Apneia/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Oxigenoterapia/métodos , Troca Gasosa Pulmonar/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Oxigênio/administração & dosagem , Dióxido de Carbono/sangue , Dióxido de Carbono/metabolismo , Adulto , Idoso , Administração Intranasal
9.
Eur J Appl Physiol ; 122(3): 735-743, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978604

RESUMO

Both voluntary rebreathing (RB) of expired air and voluntary apneas (VA) elicit changes in arterial carbon dioxide and oxygen (CO2 and O2) chemostimuli. These chemostimuli elicit synergistic increases in cerebral blood flow (CBF) and sympathetic nervous system activation, with the latter increasing systemic blood pressure. The extent that simultaneous and inverse changes in arterial CO2 and O2 and associated increases in blood pressure affect the CBF responses during RB versus VAs are unclear. We instrumented 21 healthy participants with a finometer (beat-by-beat mean arterial blood pressure; MAP), transcranial Doppler ultrasound (middle and posterior cerebral artery velocity; MCAv, PCAv) and a mouthpiece with sample line attached to a dual gas analyzer to assess pressure of end-tidal (PET)CO2 and PETO2. Participants performed two protocols: RB and a maximal end-inspiratory VA. A second-by-second stimulus index (SI) was calculated as PETCO2/PETO2 during RB. For VA, where PETCO2 and PETO2 could not be measured throughout, SI values were calculated using interpolated end-tidal gas values before and at the end of the apneas. MAP reactivity (MAPR) was calculated as the slope of the MAP/SI, and cerebrovascular reactivity (CVR) was calculated as the slope of MCAv or PCAv/SI. We found that compared to RB, VA elicited ~ fourfold increases in MAPR slope (P < 0.001), translating to larger anterior and posterior CVR (P ≤ 0.01). However, cerebrovascular conductance (MCAv or PCAv/MAP) was unchanged between interventions (P ≥ 0.2). MAP responses during VAs are larger than those during RB across similar chemostimuli, and differential CVR may be driven by increases in perfusion pressure.


Assuntos
Apneia/fisiopatologia , Pressão Arterial/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Dióxido de Carbono/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino , Oxigênio/sangue , Troca Gasosa Pulmonar , Ultrassonografia Doppler Transcraniana
10.
Eur J Appl Physiol ; 122(2): 475-487, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800158

RESUMO

PURPOSE: Autonomic control of the heart is balanced by sympathetic and parasympathetic inputs. Excitation of both sympathetic and parasympathetic systems occurs concurrently during certain perturbations such as hypoxia, which stimulate carotid chemoreflex to drive ventilation. It is well established that the chemoreflex becomes sensitized throughout hypoxic exposure; however, whether progressive sensitization alters cardiac autonomic activity remains unknown. We sought to determine the duration of hypoxic exposure at high altitude necessary to unmask cardiac arrhythmias during instances of voluntary apnea. METHODS: Measurements of steady-state chemoreflex drive (SS-CD), continuous electrocardiogram (ECG) and SpO2 (pulse oximetry) were collected in 22 participants on 1 day at low altitude (1045 m) and over eight consecutive days at high-altitude (3800 m). SS-CD was quantified as ventilation (L/min) over stimulus index (PETCO2/SpO2). RESULTS: Bradycardia during apnea was greater at high altitude compared to low altitude for all days (p < 0.001). Cardiac arrhythmias occurred during apnea each day but became most prevalent (> 50%) following Day 5 at high altitude. Changes in saturation during apnea and apnea duration did not affect the magnitude of bradycardia during apnea (ANCOVA; saturation, p = 0.15 and apnea duration, p = 0.988). Interestingly, the magnitude of bradycardia was correlated with the incidence of arrhythmia per day (r = 0.8; p = 0.004). CONCLUSION: Our findings suggest that persistent hypoxia gradually increases vagal tone with time, indicated by augmented bradycardia during apnea and progressively increased the incidence of arrhythmia at high altitude.


Assuntos
Altitude , Apneia/fisiopatologia , Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Adulto , Eletrocardiografia , Feminino , Humanos , Hipóxia/fisiopatologia , Masculino , Oximetria
11.
Respir Physiol Neurobiol ; 292: 103703, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34087491

RESUMO

Ten subjects were tested on a cycle ergometer to exhaustion with intensity corresponding to 150 % of their peak power output (TF150) under three conditions [C: base line measurement; PRE: after five repeated breath hold maneuvers (BH); and POST: after 5BH, preceded by two weeks of BH training]. Respiratory and blood measurements were carried out. Upon cessation of 5BH, subjects compared to C condition started TF150 with reduced arterialized blood pH (C:7.428±0.023, PRE:7.419±0.016, POST:7.398±0.021) and elevated bicarbonate concentration (mmol/l), ventilation (l/min) and oxygen uptake (ml/min) (C:28.4±1.5, PRE:29.9±1.2, POST:30.0±1.8; C:10.4±2.5, PRE:13.3±3.3, POST:15.6±5.6; C:333.0±113.8, PRE:550.1±131.1, POST:585.1±192.8, respectively). After TF150, subjects had significantly reduced pH and elevated ventilation, and oxygen uptake in PRE and POST, in comparison to the C condition. TF150 (sec) significantly improved after 5BH without being further affected by BH training (C:44.8±8.1, PRE:49.2±4.8, POST:49.3±8.2). Priming breath holds prior to middle-distance racing may improve performance.


Assuntos
Apneia/metabolismo , Apneia/fisiopatologia , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Esforço Físico/fisiologia , Acidose/sangue , Adulto , Ciclismo/fisiologia , Humanos , Hipercapnia/sangue , Masculino , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
12.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R174-R185, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133229

RESUMO

The current study evaluated the hypothesis that 6 mo of exercise-based cardiac rehabilitation (CR) would improve sympathetic neural recruitment in patients with ischemic heart disease (IHD). Microneurography was used to evaluate action potential (AP) discharge patterns within bursts of muscle sympathetic nerve activity (MSNA), in 11 patients with IHD (1 female; 61 ± 9 yr) pre (pre-CR) and post (post-CR) 6 mo of aerobic and resistance training-based CR. Measures were made at baseline and during maximal voluntary end-inspiratory (EI-APN) and end-expiratory apneas (EE-APN). Data were analyzed during 1 min of baseline and the second half of apneas. At baseline, overall sympathetic activity was less post-CR (all P < 0.01). During EI-APN, AP recruitment was not observed pre-CR (all P > 0.05), but increases in both within-burst AP firing frequency (Δpre-CR: 2 ± 3 AP spikes/burst vs. Δpost-CR: 4 ± 3 AP spikes/burst; P = 0.02) and AP cluster recruitment (Δpre-CR: -1 ± 2 vs. Δpost-CR: 2 ± 2; P < 0.01) were observed in post-CR tests. In contrast, during EE-APN, AP firing frequency was not different post-CR compared with pre-CR tests (Δpre-CR: 269 ± 202 spikes/min vs. Δpost-CR: 232 ± 225 spikes/min; P = 0.54), and CR did not modify the recruitment of new AP clusters (Δpre-CR: -1 ± 3 vs. Δpost-CR: 0 ± 1; P = 0.39), or within-burst firing frequency (Δpre-CR: 3 ± 3 AP spikes/burst vs. Δpost-CR: 2 ± 2 AP spikes/burst; P = 0.21). These data indicate that CR improves some of the sympathetic nervous system dysregulation associated with cardiovascular disease, primarily via a reduction in resting sympathetic activation. However, the benefits of CR on sympathetic neural recruitment may depend upon the magnitude of initial impairment.


Assuntos
Apneia/fisiopatologia , Reabilitação Cardíaca , Terapia por Exercício , Tolerância ao Exercício , Músculo Esquelético/inervação , Isquemia Miocárdica/reabilitação , Recrutamento Neurofisiológico , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação , Idoso , Aptidão Cardiorrespiratória , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento
13.
Arch Dis Child Fetal Neonatal Ed ; 106(6): 603-607, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33931396

RESUMO

BACKGROUND: Neonatal endotracheal intubation is often associated with physiological instability. The Neonatal Resuscitation Program recommends a time-based limit (30 s) for intubation attempts in the delivery room, but there are limited physiological data to support recommendations in the neonatal intensive care unit (NICU). We aimed to determine the time to desaturation after ceasing spontaneous or assisted breathing in preterm infants undergoing elective endotracheal intubation in the NICU. METHODS: Observational study at The Royal Women's Hospital, Melbourne. A secondary analysis was performed of video recordings of neonates ≤32 weeks' postmenstrual age undergoing elective intubation. Infants received premedication including atropine, a sedative and muscle relaxant. Apnoeic oxygenation time (AOT) was defined as the time from the last positive pressure or spontaneous breath until desaturation (SpO2 <90%). RESULTS: Seventy-eight infants were included. The median (IQR) gestational age at birth was 27 (26-29) weeks and birth weight 946 (773-1216) g. All but five neonates desaturated to SpO2 <90% (73/78, 94%). The median (IQR) AOT was 22 (14-32) s. The median (IQR) time from ceasing positive pressure ventilation to desaturation <80% was 35 (24-44) s and to desaturation <60% was 56 (42-68) s. No episodes of bradycardia were seen. CONCLUSIONS: This is the first study to report AOT in preterm infants. During intubation of preterm infants in the NICU, desaturation occurs quickly after cessation of positive pressure ventilation. These data are important for the development of clinical guidelines for neonatal intubation. TRIAL REGISTRATION NUMBER: ACTRN12614000709640.


Assuntos
Apneia , Hipóxia , Cuidado do Lactente , Recém-Nascido Prematuro/fisiologia , Intubação Intratraqueal , Ressuscitação , Apneia/diagnóstico , Apneia/fisiopatologia , Apneia/terapia , Austrália/epidemiologia , Feminino , Idade Gestacional , Humanos , Hipóxia/diagnóstico , Hipóxia/terapia , Cuidado do Lactente/métodos , Cuidado do Lactente/normas , Cuidado do Lactente/estatística & dados numéricos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Intubação Intratraqueal/estatística & dados numéricos , Masculino , Avaliação de Processos e Resultados em Cuidados de Saúde , Seleção de Pacientes , Respiração com Pressão Positiva/métodos , Pré-Medicação/métodos , Ressuscitação/métodos , Ressuscitação/normas , Ressuscitação/estatística & dados numéricos , Gravação em Vídeo/métodos , Gravação em Vídeo/estatística & dados numéricos
14.
Eur J Appl Physiol ; 121(6): 1543-1566, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33791844

RESUMO

Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.


Assuntos
Adaptação Fisiológica , Apneia/fisiopatologia , Suspensão da Respiração , Mergulho/fisiologia , Educação Física e Treinamento , Fenômenos Fisiológicos Cardiovasculares , Humanos , Fenômenos Fisiológicos Respiratórios
15.
Physiol Rep ; 9(1): e14703, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33426815

RESUMO

The presence of bradycardic arrhythmias during volitional apnea at altitude may be caused by chemoreflex activation/sensitization. We investigated whether bradyarrhythmic episodes became prevalent in apnea following short-term hypoxia exposure. Electrocardiograms (ECG; lead II) were collected from 22 low-altitude residents (F = 12; age=25 ± 5 years) at 671 m. Participants were exposed to normobaric hypoxia (SpO2 ~79 ± 3%) over a 5-h period. ECG rhythms were assessed during both free-breathing and maximal volitional end-expiratory and end-inspiratory apnea at baseline during normoxia and hypoxia exposure (20 min [AHX]; 5 h [HX5]). Free-breathing HR became elevated at AHX (78 ± 10 bpm; p < 0.0001) and HX5 (80 ± 12 bpm; p < 0.0001) compared to normoxia (68 ± 10 bpm), whereas apnea caused significant bradycardia at AHX (nadir end-expiratory -17 ± 14 bpm; p < 0.001) and HX5 (nadir end-expiratory -19 ± 15 bpm; p < 0.001), but not during normoxia (nadir end-expiratory -4 ± 13 bpm), with no difference in bradycardia responses between apneas at AHX and HX5. Conduction abnormalities were noted in five participants during normoxia (Premature Ventricular Contraction, Sinus Pause, Junctional Rhythm, Atrial Foci), which remained unchanged during apnea at AHX and HX5 (Premature Ventricular Contraction, Premature Atrial Contraction, Sinus Pause). End-inspiratory apneas were overall longer across conditions (normoxia p < 0.05; AHX p < 0.01; HX5 p < 0.001), with comparable HR responses to end-expiratory and fewer occurrences of arrhythmia. While short-term hypoxia is sufficient to elicit bradycardia during apnea, the occurrence of arrhythmias in response to apnea was not affected. These findings indicate that previously observed bradyarrhythmic events in untrained individuals at altitude only become prevalent following chronic hypoxia specificlly.


Assuntos
Apneia/fisiopatologia , Arritmias Cardíacas/epidemiologia , Bradicardia/epidemiologia , Sistema de Condução Cardíaco/fisiopatologia , Hipóxia/fisiopatologia , Adulto , Arritmias Cardíacas/patologia , Bradicardia/patologia , Canadá/epidemiologia , Células Quimiorreceptoras , Feminino , Frequência Cardíaca , Humanos , Masculino
16.
Physiol Rep ; 9(1): e14664, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33393725

RESUMO

Central and peripheral respiratory chemoreceptors are stimulated during voluntary breath holding due to chemostimuli (i.e., hypoxia and hypercapnia) accumulating at the metabolic rate. We hypothesized that voluntary breath-hold duration (BHD) would be (a) positively related to the initial pressure of inspired oxygen prior to breath holding, and (b) negatively correlated with respiratory chemoreflex responsiveness. In 16 healthy participants, voluntary breath holds were performed under three conditions: hyperoxia (following five normal tidal breaths of 100% O2 ), normoxia (breathing room air), and hypoxia (following ~30-min of 13.5%-14% inspired O2 ). In addition, the hypoxic ventilatory response (HVR) was tested and steady-state chemoreflex drive (SS-CD) was calculated in room air and during steady-state hypoxia. We found that (a) voluntary BHD was positively related to initial oxygen status in a dose-dependent fashion, (b) the HVR was not correlated with BHD in any oxygen condition, and (c) SS-CD magnitude was not correlated with BHD in normoxia or hypoxia. Although chemoreceptors are likely stimulated during breath holding, they appear to contribute less to BHD compared to other factors such as volitional drive or lung volume.


Assuntos
Apneia/fisiopatologia , Células Quimiorreceptoras/metabolismo , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Pulmão/fisiologia , Oxigênio/fisiologia , Reflexo/fisiologia , Adulto , Suspensão da Respiração , Feminino , Humanos , Masculino
17.
Anaesthesia ; 76(7): 924-932, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33351194

RESUMO

Transnasal humidified rapid insufflation ventilatory exchange prolongs safe apnoeic oxygenation time in children. In adults, transnasal humidified rapid insufflation ventilatory exchange is reported to have a ventilatory effect with PaCO2 levels increasing less rapidly than without it. This ventilatory effect has yet to be reproduced in children. In this non-inferiority study, we tested the hypothesis that children weighing 10-15 kg exhibit no difference in carbon dioxide clearance when comparing two different high-flow nasal therapy flow rates during a 10-min apnoea period. Following standardised induction of anaesthesia including neuromuscular blockade, patients were randomly allocated to high-flow nasal therapy of 100% oxygen at 2 or 4 l.kg-1 .min-1 . Airway patency was ensured by continuous jaw thrust. The study intervention was terminated for safety reasons when SpO2 values dropped < 95%, or transcutaneous carbon dioxide levels rose > 9.3 kPa, or near-infrared spectroscopy values dropped > 20% from their baseline values, or after an apnoeic period of 10 min. Fifteen patients were included in each group. In the 2 l.kg-1 .min-1 group, mean (SD) transcutaneous carbon dioxide increase was 0.46 (0.11) kPa.min-1 , while in the 4 l.kg-1 .min-1 group it was 0.46 (0.12) kPa.min-1 . The upper limit of a one-sided 95%CI for the difference between groups was 0.07 kPa.min-1 , lower than the predefined non-inferiority margin of 0.147 kPa.min-1 (p = 0.001). The lower flow rate of 2 l.kg-1 .min-1 was non-inferior to 4 l.kg-1 .min-1 relative to the transcutaneous carbon dioxide increase. In conclusion, an additional ventilatory effect of either 2 or 4 l.kg-1 .min-1 high-flow nasal therapy in apnoeic children weighing 10-15 kg appears to be absent.


Assuntos
Administração Intranasal/métodos , Apneia/terapia , Oxigenoterapia/métodos , Ventilação Pulmonar/fisiologia , Apneia/fisiopatologia , Pré-Escolar , Feminino , Humanos , Lactente , Insuflação , Masculino , Oxigênio , Estudos Prospectivos , Método Simples-Cego , Vapor , Suíça , Tempo
18.
Brain Pathol ; 31(1): 84-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32654284

RESUMO

Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.


Assuntos
Apneia/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Hipoventilação/congênito , Neurônios Motores/metabolismo , Neurogênese/fisiologia , Apneia do Sono Tipo Central/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Apneia/etiologia , Modelos Animais de Doenças , Hipoventilação/complicações , Hipoventilação/fisiopatologia , Camundongos , Fenótipo , Apneia do Sono Tipo Central/complicações
19.
J Thorac Cardiovasc Surg ; 162(3): 867-877.e1, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32312535

RESUMO

OBJECTIVE: To review practices of brain death (BD) determination in patients on extracorporeal membrane oxygenation (ECMO). METHODS: A systematic search was applied to PubMed and 6 electronic databases from inception to May 22, 2019. Studies reporting methods of BD assessment in adult patients (>18 years old) while on ECMO were included, after which data regarding BD assessment were extracted. RESULTS: Twenty-two studies (n = 177 patients) met the inclusion criteria. Eighty-eight patients (50%) in 19 studies underwent the apnea test (AT); most commonly through decreasing the ECMO sweep flow in 14 studies (n = 42, 48%), followed by providing CO2 through the ventilator in 2 studies (n = 6, 7%), and providing CO2 through the ECMO oxygenator in 1 study (n = 1, 1%). The details of the AT were not reported in 2 studies (n = 39, 44%). In 19 patients (22%), the AT was nonconfirmatory due to hemodynamic instability, hypoxia, insufficient CO2 rise, or unreliability of the AT. A total of 157 ancillary tests were performed, including electroencephalogram (62%), computed tomography angiography (22%), transcranial Doppler ultrasound (6%), cerebral blood flow nuclear study (5%), cerebral angiography (4%), and other (1%). Forty-seven patients (53% of patients with AT) with confirmatory AT still underwent additional ancillary for BD confirmation. Only 21 patients (12% of all patients) were declared brain-dead using confirmatory ATs alone without ancillary testing. CONCLUSIONS: Performing AT for patients with ECMO was associated with high failure rate and hemodynamic complications. Our study highlights the variability in practice in regard to the AT and supports the use of ancillary tests to determine BD in patients on ECMO.


Assuntos
Apneia/diagnóstico , Morte Encefálica/diagnóstico , Oxigenação por Membrana Extracorpórea/mortalidade , Apneia/mortalidade , Apneia/fisiopatologia , Morte Encefálica/fisiopatologia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hemodinâmica , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Respiração
20.
Exp Physiol ; 106(1): 338-349, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421235

RESUMO

NEW FINDINGS: What is the central question of this study? Splenic contractions occur in response to apnoea-induced hypoxia with and without face immersion in water. However, the splenic responses to a series of static or dynamic apnoeas with whole-body water immersion in non-divers and elite breath-hold divers are unknown. What is the main finding and its importance? Static and dynamic apnoeas were equally effective in stimulating splenic contractions across non-divers and elite breath-hold divers. These findings demonstrate that the magnitude of the splenic response is largely dictated by the degree of the hypoxemic stress encountered during voluntary apnoeic epochs. ABSTRACT: Splenic contractions occur in response to apnoea-induced hypoxia with and without facial water immersion. However, the splenic responses to a series of static (STA) or dynamic (DYN) apnoeas with whole-body water immersion in non-divers (NDs) and elite breath-hold divers (EBHDs) are unknown. EBHD (n = 8), ND (n = 10) and control participants (n = 8) were recruited. EBHD and ND performed a series of five maximal DYN or STA on separate occasions. Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on splenic volume and haematology. Heart rate (HR) and peripheral oxygen saturation (SpO2 ) were monitored for 30 s after each apnoea. Pre- and post-apnoeic splenic volumes were quantified ultrasonically, and blood samples were drawn for haematology. For EBHD and ND end-apnoeic HR was higher (P < 0.001) and SpO2 was lower in DYN (P = 0.024) versus STA. EBHD attained lower end-apnoeic SpO2 during DYN and STA than NDs (P < 0.001). Splenic contractions occurred following DYN (EBHD, -47 ± 6%; ND, -37 ± 4%; P < 0.001) and STA (EBHD, -26 ± 4%; ND, -26 ± 8%; P < 0.01). DYN-associated splenic contractions were greater than STA in EBHD only (P = 0.042). Haemoglobin concentrations were higher following DYN only (EBHD, +5 ± 8g/L  , +4 ± 2%; ND, +8 ± 3 g/L , +4.9 ± 3%; P = 0.019). Haematocrit remained unchanged after each protocol. There were no between group differences in post-apnoeic splenic volume or haematology. In both groups, splenic contractions occurred in response to STA and DYN when combined with whole-body immersion. DYN apnoeas, were effective at increasing haemoglobin concentrations but not STA apnoeas. Thus, the magnitude of the splenic response relates to the hypoxemic stress encountered during apnoeic epochs.


Assuntos
Apneia/fisiopatologia , Mergulho/fisiologia , Hipóxia/fisiopatologia , Saturação de Oxigênio/fisiologia , Água/metabolismo , Suspensão da Respiração , Frequência Cardíaca/fisiologia , Humanos , Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...