Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698355

RESUMO

The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin-Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice.


Assuntos
Apolipoproteína A-I , Linfopoese , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Células da Medula Óssea , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL , Linfócitos T
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716267

RESUMO

The rapid development of nanotechnology has greatly benefited modern science and engineering and also led to an increased environmental exposure to nanoparticles (NPs). While recent research has established a correlation between the exposure of NPs and cardiovascular diseases, the intrinsic mechanisms of such a connection remain unclear. Inhaled NPs can penetrate the air-blood barrier from the lung to systemic circulation, thereby intruding the cardiovascular system and generating cardiotoxic effects. In this study, on-site cardiovascular damage was observed in mice upon respiratory exposure of silica nanoparticles (SiNPs), and the corresponding mechanism was investigated by focusing on the interaction of SiNPs and their encountered biomacromolecules en route. SiNPs were found to collect a significant amount of apolipoprotein A-I (Apo A-I) from the blood, in particular when the SiNPs were preadsorbed with pulmonary surfactants. While the adsorbed Apo A-I ameliorated the cytotoxic and proinflammatory effects of SiNPs, the protein was eliminated from the blood upon clearance of the NPs. However, supplementation of Apo A-I mimic peptide mitigated the atherosclerotic lesion induced by SiNPs. In addition, we found a further declined plasma Apo A-I level in clinical silicosis patients than coronary heart disease patients, suggesting clearance of SiNPs sequestered Apo A-I to compromise the coronal protein's regular biological functions. Together, this study has provided evidence that the protein corona of SiNPs acquired in the blood depletes Apo A-I, a biomarker for prediction of cardiovascular diseases, which gives rise to unexpected toxic effects of the nanoparticles.


Assuntos
Apolipoproteína A-I/deficiência , Doenças Cardiovasculares/etiologia , Nanopartículas/efeitos adversos , Adsorção/efeitos dos fármacos , Animais , Apolipoproteína A-I/sangue , Sistema Cardiovascular , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/química , Nanotecnologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Dióxido de Silício/química
3.
Respir Res ; 21(1): 293, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148285

RESUMO

BACKGROUND: Septic-acute respiratory distress syndrome (ARDS), characterized by the acute lung injury (ALI) secondary to aberrant systemic inflammatory response, has high morbidity and mortality. Despite increased understanding of ALI pathogenesis, the therapies to prevent lung dysfunction underlying systemic inflammatory disorder remain elusive. The high density lipoprotein (HDL) has critical protective effects in sepsis and its dysfunction has a manifested contribution to septic organ failure. However, the adverse changes in HDL composition and function in septic-ARDS patients are large unknown. METHODS: To investigate HDL remodeling in septic-ARDS, we analyzed the changes of HDL composition from 40 patients with septic-ARDS (A-HDL) and 40 matched normal controls (N-HDL). To determine the deleterious functional remodeling of HDL, A-HDL or N-HDL was administrated to C57BL/6 and apoA-I knock-out (KO) mice after cecal ligation and puncture (CLP) procedure. Mouse lung microvascular endothelial cells (MLECs) were further treated by these HDLs to investigate whether the adverse effects of A-HDL were associated with endothelial dysfunction. RESULTS: Septic-ARDS patients showed significant changes of HDL composition, accompanied with significantly decreased HDL-C. We further indicated that A-HDL treatment aggravated CLP induced ALI. Intriguingly, these deleterious effects of A-HDL were associated with pulmonary endothelial dysfunction, rather than the increased plasma lipopolysaccharide (LPS). Further in vitro results demonstrated the direct effects of A-HDL on MLECs, including increased endothelial permeability, enhanced expressions of adhesion proteins and pro-inflammatory cytokines via activating NF-κB signaling and decreased junction protein expression. CONCLUSIONS: Our results depicted the remodeling of HDL composition in sepsis, which predisposes lung to ARDS via inducing ECs dysfunction. These results also demonstrated the importance of circulating HDL in regulating alveolar homeostasis.


Assuntos
Lesão Pulmonar Aguda/etiologia , Células Endoteliais/metabolismo , Lipoproteínas HDL/toxicidade , Pulmão/irrigação sanguínea , Microvasos/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Permeabilidade Capilar , Estudos de Casos e Controles , Ceco/microbiologia , Ceco/cirurgia , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Ligadura , Lipoproteínas HDL/sangue , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Punções , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/patologia , Sepse/microbiologia , Proteínas de Junções Íntimas/metabolismo , Adulto Jovem
4.
J Lipid Res ; 61(3): 328-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915139

RESUMO

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.


Assuntos
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
5.
J Clin Lipidol ; 13(3): 468-480.e8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31003938

RESUMO

BACKGROUND: Familial apolipoprotein A-I (apoA-I) deficiency (FAID) involving low levels of both apoA-I and high-density lipoprotein (HDL) cholesterol is associated with accelerated atherosclerosis. OBJECTIVE: The objective of this study was to define distinctive patterns in the lipidome of HDL subpopulations in FAID in relationship to antiatherogenic activities. METHODS: Five HDL subfractions were isolated by ultracentrifugation from plasma of FAID Caucasian patients (n = 5) and age-matched healthy normolipidemic Caucasian controls (n = 8), and the HDL lipidome (160 molecular species of 9 classes of phospholipids and sphingolipids) was quantitatively evaluated. RESULTS: Increased concentrations of numerous molecular species of lysophosphatidylcholine (up to 12-fold), ceramides (up to 3-fold), phosphatidylserine (up to 34-fold), phosphatidic acid (up to 71-fold), and phosphatidylglycerol (up to 20-fold) were detected throughout all five HDL subpopulations as compared with their counterparts from controls, whereas concentrations of phosphatidylethanolamine species were decreased (up to 5-fold). Moderately to highly abundant, within their lipid class, species of phosphatidylcholine, sphingomyelin, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine, and ceramide featuring multiple unsaturations were primarily affected by apoA-I deficiency; their HDL content, particularly that of phosphatidylcholine (34:2), was strongly correlated with HDL function, impaired in FAID. Metabolic pathway analysis revealed that sphingolipid, glycerophospholipid, and linoleic acid metabolism was significantly affected by FAID. CONCLUSION: These data reveal that altered content of specific phospholipid and sphingolipid species is linked to deficient antiatherogenic properties of HDL in FAID.


Assuntos
Apolipoproteína A-I/deficiência , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Fosfolipídeos/química , Esfingolipídeos/química , Humanos
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1351-1360, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742993

RESUMO

High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic ß-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat-/- mice the most sensitive to weight gain out of the three strains tested, followed by apoa1-/- mice. Nevertheless, only apoa1-/- mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic ß-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1-/- and lcat-/- mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.


Assuntos
Tecido Adiposo Branco/metabolismo , Apolipoproteína A-I/genética , Glucose/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/genética , Obesidade/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Tecido Adiposo Branco/patologia , Animais , Apolipoproteína A-I/deficiência , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Homeostase/genética , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Deficiência da Lecitina Colesterol Aciltransferase/etiologia , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosforilação Oxidativa , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transdução de Sinais , Termogênese/genética , Aumento de Peso/genética
7.
J Proteome Res ; 18(1): 48-56, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30543107

RESUMO

Type 2 diabetes mellitus (T2DM) has become a tremendous problem in public health nowadays. High-density lipoprotein (HDL) refers to a group of heterogeneous particles that circulate in blood, and a recent research finds that HDL acts a pivotal part of glucose metabolism. To understand systemic metabolic changes correlated with HDL in glucose metabolism, we applied LC-MS-based metabolomics and lipidomics to detect metabolomic and lipidomic profiles of plasma from apoA-I knockout mice fed a high-fat diet. Multivariate analysis was applied to differentiate apoA-I knockout mice and controls, and potential biomarkers were found. Pathway analysis demonstrated that several metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis were dysregulated in apoA-I knockout mice. This study may provide a new insight into the underlying pathogenesis in T2DM and prove that LC-MS-based metabolomics and lipidomics are powerful approaches in finding potential biomarkers and disturbed pathways.


Assuntos
Glucose/metabolismo , Lipidômica/métodos , Lipoproteínas HDL , Metabolômica/métodos , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Cromatografia Líquida , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Espectrometria de Massas em Tandem
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 991-997, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852278

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9), a protein regulating the number of cell-surface LDL receptors (LDLR), circulates partially associated to plasma lipoproteins. How this interaction alters PCSK9 plasma levels is still unclear. In the present study, we took advantage of the availability of a large cohort of carriers of genetic HDL disorders to evaluate how HDL defects affect plasma PCSK9 levels and its distribution among lipoproteins. Plasma PCSK9 concentrations were determined by ELISA in carriers of mutations in LCAT, ABCA1, or APOAI genes, and lipoprotein distribution was analyzed by FPLC. Carriers of one or two mutations in the LCAT gene show plasma PCSK9 levels comparable to that of unaffected family controls (homozygotes, 159.4 ng/mL (124.9;243.3); heterozygotes, 180.3 ng/mL (127.6;251.5) and controls, 190.4 ng/mL (146.7;264.4); P for trend = 0.33). Measurement of PCSK9 in plasma of subjects carrying mutations in ABCA1 or APOAI genes confirmed normal values. When fractionated by FPLC, PCSK9 peaked in a region between LDL and HDL in control subjects. In carriers of all HDL defects, lipoprotein profile shows a strong reduction of HDL, but the distribution of PCSK9 was superimposable to that of controls. In conclusion, the present study demonstrates that in genetically determined low HDL states plasma PCSK9 concentrations and lipoprotein distribution are preserved, thus suggesting that HDL may not be involved in PCSK9 transport in plasma.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/sangue , Apolipoproteína A-I/sangue , Hipolipoproteinemias/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Pró-Proteína Convertase 9/sangue , Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportador 1 de Cassete de Ligação de ATP/genética , Adulto , Idoso , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Heterozigoto , Homozigoto , Humanos , Hipolipoproteinemias/genética , Hipolipoproteinemias/patologia , Lipoproteínas HDL/sangue , Lipoproteínas HDL/genética , Lipoproteínas LDL/sangue , Lipoproteínas LDL/genética , Masculino , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Pró-Proteína Convertase 9/genética
9.
J Clin Lipidol ; 12(2): 511-514, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29396262

RESUMO

Apolipoprotein A-I deficiency is a rare metabolic disease characterized by an impaired reverse cholesterol transport system resulting in excessive cholesterol accumulation. Here, we discuss a case of apolipoprotein A-I deficiency caused by a carboxyl-terminal truncation mutation p.His186ProfsX46 in APOA1, which might result in increased catabolism of the mutant protein.


Assuntos
Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Mutação , Idoso , Apolipoproteína A-I/sangue , Sequência de Bases , Colesterol/sangue , HDL-Colesterol/sangue , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Linhagem , Sequenciamento do Exoma
10.
Atherosclerosis ; 261: 99-104, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28242047

RESUMO

BACKGROUND AND AIMS: Statin treatment disrupts HMG-CoA reductase-mediated endogenous cholesterol synthesis and lowers plasma LDL-cholesterol levels. Although statin treatment can theoretically impair adrenal steroid hormone synthesis, thus far, no effect on glucocorticoid output has been described, as LDL-cholesterol levels usually remain within the physiological range. However, novel statin-based treatment regimens that dramatically decrease LDL-cholesterol levels are currently employed. Here, we assessed whether inhibition of cholesterol synthesis under these relatively hypocholesterolemic conditions may alter adrenal glucocorticoid output. METHODS: Hypocholesterolemic apolipoprotein A1 (apoA1) knockout mice were administered high dose simvastatin twice daily for 3 days. RESULTS: Simvastatin treatment did not change plasma cholesterol levels or modify the adrenal expression levels of genes involved in cholesterol metabolism. However, simvastatin treatment lowered basal plasma levels of the primary glucocorticoid corticosterone (-62%; p < 0.05). Upon injection with adrenocorticotropic hormone, control-treated apoA1 knockout mice already showed only a mild increase in plasma corticosterone levels, indicative of relative glucocorticoid insufficiency. Importantly, simvastatin treatment further diminished the adrenal glucocorticoid response to adrenocorticotropic hormone exposure (two-way ANOVA p < 0.05 for treatment). Peak corticosterone levels were 49% lower (p < 0.01) upon simvastatin treatment. CONCLUSIONS: We have shown that simvastatin treatment aggravates the glucocorticoid insufficiency associated with hypocholesterolemia in mice. Our data suggest that (1) HMG-CoA reductase activity controls the adrenal steroidogenic capacity under hypocholesterolemic conditions and (2) imply that it might be important to monitor adrenal function in humans subjected to statin-based treatments aimed at achieving sub-physiological LDL-cholesterol levels, as these may potentially execute a negative impact on the glucocorticoid function in humans.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Insuficiência Adrenal/induzido quimicamente , Colesterol/sangue , Corticosterona/deficiência , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Hipercolesterolemia/tratamento farmacológico , Sinvastatina/toxicidade , Testes de Função do Córtex Suprarrenal , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Insuficiência Adrenal/sangue , Insuficiência Adrenal/fisiopatologia , Hormônio Adrenocorticotrópico/administração & dosagem , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Biomarcadores/sangue , Corticosterona/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética
11.
J Lipid Res ; 58(5): 994-1001, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28351888

RESUMO

The aim of this study was to evaluate the vasoprotective effects of HDL isolated from carriers of LCAT deficiency, which are characterized by a selective depletion of LpA-I:A-II particles and predominance of preß migrating HDL. HDLs were isolated from LCAT-deficient carriers and tested in vitro for their capacity to promote NO production and to inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in cultured endothelial cells. HDLs from carriers were more effective than control HDLs in promoting eNOS activation with a gene-dose-dependent effect (PTrend = 0.048). As a consequence, NO production induced by HDL from carriers was significantly higher than that promoted by control HDL (1.63 ± 0.24-fold vs. 1.34 ± 0.07-fold, P = 0.031). HDLs from carriers were also more effective than control HDLs in inhibiting the expression of VCAM-1 (homozygotes, 65.0 ± 8.6%; heterozygotes, 53.1 ± 7.2%; controls, 44.4 ± 4.1%; PTrend = 0.0003). The increased efficiency of carrier HDL was likely due to the depletion in LpA-I:A-II particles. The in vitro findings might explain why carriers of LCAT deficiency showed flow-mediated vasodilation and plasma-soluble cell adhesion molecule concentrations comparable to controls, despite low HDL-cholesterol levels. These results indicate that selective depletion of apoA-II-containing HDL, as observed in carriers of LCAT deficiency, leads to an increased capacity of HDL to stimulate endothelial NO production, suggesting that changes in HDL apolipoprotein composition may be the target of therapeutic interventions designed to improve HDL functionality.


Assuntos
Apolipoproteína A-II/deficiência , Apolipoproteína A-I/deficiência , Células Endoteliais/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/metabolismo , Adulto , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
BMC Ophthalmol ; 17(1): 11, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178939

RESUMO

BACKGROUND: Apo A-I deficiency clinically shows low serum levels of HDL cholesterol and corneal opacity at a young age. Histopathological evaluations of affected corneas are not enough, and the mechanism of corneal opacity is still unclear. CASE PRESENTATION: A 61-year-old woman suffered from blurred vision with a corneal opacity. She had significantly reduced serum levels of high-density lipoprotein cholesterol and Apo A-I, stenosis of the coronary arteries, and ischemic heart failure. On genetic examination, a homozygous mutation of Apo A-ITsukuba was identified. Histopathological examination of the corneal button after PKP showed numerous vesicles in the corneal stroma, which were more prominent in the deep stroma than in the shallow stroma. Collagen VI was observed in some of those vesicles. CONCLUSION: We experienced a rare case of corneal opacity due to Apo A-I deficiency. Our histopathological findings indicated that structural changes in corneal collagen fibrils contribute to the formation of stromal vesicles.


Assuntos
Apolipoproteína A-I/deficiência , Colágeno Tipo VI/metabolismo , Córnea/patologia , Opacidade da Córnea/etiologia , Dislipidemias/complicações , Apolipoproteína A-I/sangue , Córnea/metabolismo , Opacidade da Córnea/diagnóstico , Opacidade da Córnea/metabolismo , Dislipidemias/diagnóstico , Dislipidemias/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Microscopia Confocal , Pessoa de Meia-Idade
13.
Br J Pharmacol ; 173(18): 2780-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27425846

RESUMO

BACKGROUND AND PURPOSE: New therapies for inflammatory bowel disease (IBD) are highly desirable. As apolipoprotein (apo)A-I mimetic peptides are beneficial in several animal models of inflammation, we hypothesized that they might be effective at inhibiting murine colitis. EXPERIMENTAL APPROACH: Daily injections of 5A peptide, a synthetic bihelical apoA-I mimetic dissolved in PBS, or PBS alone were administered to C57BL/6 mice fed 3% (w v(-1) ) dextran sodium sulfate (DSS) in drinking water or healthy controls. KEY RESULTS: Daily treatment with 5A peptide potently restricted DSS-induced inflammation, as indicated by improved disease activity indices and colon histology, as well as decreased intestinal tissue myeloperoxidase levels and plasma TNFα and IL-6 concentrations. Additionally, plasma levels of monocyte chemoattractant protein-1 and the monocyte expression of adhesion-mediating molecule CD11b were down-regulated, pro-inflammatory CD11b(+) /Ly6c(high) monocytes were decreased, and the number of intestinal monocytes was reduced in 5A peptide-treated animals as determined by intravital macrophage-related peptide-8/14-directed fluorescence-mediated tomography and post-mortem immunhistochemical F4/80 staining. Intravital fluorescence microscopy of colonic microvasculature demonstrated inhibitory effects of 5A peptide on leukocyte adhesion accompanied by reduced plasma levels of the soluble adhesion molecule sICAM-1. In vitro 5A peptide reduced monocyte adhesion and transmigration in TNFα-stimulated monolayers of human intestinal microvascular endothelial cells. Increased susceptibility to DSS-induced inflammation was noted in apoA-I(-/-) mice. CONCLUSIONS AND IMPLICATIONS: The 5A peptide is effective at ameliorating murine colitis by preventing intestinal monocyte infiltration and activation. These findings point to apoA-I mimetics as a potential treatment approach for IBD.


Assuntos
Apolipoproteína A-I/metabolismo , Colite/tratamento farmacológico , Monócitos/efeitos dos fármacos , Animais , Apolipoproteína A-I/administração & dosagem , Apolipoproteína A-I/deficiência , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia
14.
Arterioscler Thromb Vasc Biol ; 36(7): 1356-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27150392

RESUMO

OBJECTIVE: Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. APPROACH AND RESULTS: Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. CONCLUSIONS: Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner.


Assuntos
Apolipoproteína A-I/metabolismo , Iodeto Peroxidase/metabolismo , Fígado/enzimologia , Transdução de Sinais , Tri-Iodotironina/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , HDL-Colesterol/sangue , Regulação da Expressão Gênica , Genótipo , Células Hep G2 , Humanos , Iodeto Peroxidase/deficiência , Iodeto Peroxidase/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Elementos de Resposta , Transfecção
15.
Lab Invest ; 96(7): 763-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088511

RESUMO

Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We conclude that the apoA-1 deficiency generates changes in the bone cell precursor population that increase adipoblast, and decrease osteoblast production resulting in reduced bone mass and impaired bone quality in mice.


Assuntos
Adipócitos/metabolismo , Apolipoproteína A-I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Adipócitos/citologia , Adipogenia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Densidade Óssea , Diferenciação Celular , Quimiocina CXCL12/genética , Hidrocortisona/biossíntese , Lipoproteínas HDL/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/genética , Receptores de Lipoproteínas/metabolismo , Receptores Depuradores Classe B/genética
16.
Oncogene ; 35(19): 2496-505, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26279300

RESUMO

In both humans with long-standing ulcerative colitis and mouse models of colitis-associated carcinogenesis (CAC), tumors develop predominantly in the distal part of the large intestine but the biological basis of this intriguing pathology remains unknown. Herein we report intrinsic differences in gene expression between proximal and distal colon in the mouse, which are augmented during dextran sodium sulfate (DSS)/azoxymethane (AOM)-induced CAC. Functional enrichment of differentially expressed genes identified discrete biological pathways operating in proximal vs distal intestine and revealed a cluster of genes involved in lipid metabolism to be associated with the disease-resistant proximal colon. Guided by this finding, we have further interrogated the expression and function of one of these genes, apolipoprotein A-I (ApoA-I), a major component of high-density lipoprotein. We show that ApoA-I is expressed at higher levels in the proximal compared with the distal part of the colon and its ablation in mice results in exaggerated DSS-induced colitis and disruption of epithelial architecture in larger areas of the large intestine. Conversely, treatment with an ApoA-I mimetic peptide ameliorated the phenotypic, histopathological and inflammatory manifestations of the disease. Genetic interference with ApoA-I levels in vivo impacted on the number, size and distribution of AOM/DSS-induced colon tumors. Mechanistically, ApoA-I was found to modulate signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB activation in response to the bacterial product lipopolysaccharide with concomitant impairment in the production of the pathogenic cytokine interleukin-6. Collectively, these data demonstrate a novel protective role for ApoA-I in colitis and CAC and unravel an unprecedented link between lipid metabolic processes and intestinal pathologies.


Assuntos
Apolipoproteína A-I/metabolismo , Carcinogênese , Colite/complicações , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL
18.
Brain ; 138(Pt 12): 3699-715, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510953

RESUMO

UNLABELLED: ATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1(ko)), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the ε4 allele of APOE is the major genetic risk factor for late-onset Alzheimer's disease, ABCA1 role as a modifier of APOE lipidation is of significance for this disease. Reportedly, Abca1 deficiency in mice expressing human APP accelerates amyloid deposition and behaviour deficits. We used APP/PS1dE9 mice crossed to Apoe and Apoa1 knockout mice to generate Apoe/Apoa1 double-knockout mice. We hypothesized that Apoe/Apoa1 double-knockout mice would mimic the phenotype of APP/Abca1(ko) mice in regards to amyloid plaques and cognitive deficits. Amyloid pathology, peripheral lipoprotein metabolism, cognitive deficits and dendritic morphology of Apoe/Apoa1 double-knockout mice were compared to APP/Abca1(ko), APP/PS1dE9, and single Apoa1 and Apoe knockouts. Contrary to our prediction, the results demonstrate that double deletion of Apoe and Apoa1 ameliorated the amyloid pathology, including amyloid plaques and soluble amyloid. In double knockout mice we show that (125)I-amyloid-ß microinjected into the central nervous system cleared at a rate twice faster compared to Abca1 knockout mice. We tested the effect of Apoe, Apoa1 or Abca1 deficiency on spreading of exogenous amyloid-ß seeds injected into the brain of young pre-depositing APP mice. The results show that lack of Abca1 augments dissemination of exogenous amyloid significantly more than the lack of Apoe. In the periphery, Apoe/Apoa1 double-knockout mice exhibited substantial atherosclerosis and very high levels of low density lipoproteins compared to APP/PS1dE9 and APP/Abca1(ko). Plasma level of amyloid-ß42 measured at several time points for each mouse was significantly higher in Apoe/Apoa1 double-knockout then in APP/Abca1(ko) mice. This result demonstrates that mice with the lowest level of plasma lipoproteins, APP/Abca1(ko), have the lowest level of peripheral amyloid-ß. Unexpectedly, and independent of amyloid pathology, the deletion of both apolipoproteins worsened behaviour deficits of double knockout mice and their performance was undistinguishable from those of Abca1 knockout mice. Finally we observed that the dendritic complexity in the CA1 region of hippocampus but not in CA2 is significantly impaired by Apoe/Apoa1 double deletion as well as by lack of ABCA1. IN CONCLUSION: (i) plasma lipoproteins may affect amyloid-ß clearance from the brain by the 'peripheral sink' mechanism; and (ii) deficiency of brain APOE-containing lipoproteins is of significance for dendritic complexity and cognition.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteína A-I/deficiência , Apolipoproteínas E/deficiência , Transtornos Cognitivos/genética , Transtornos Cognitivos/psicologia , Deleção de Genes , Placa Amiloide/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacocinética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Feminino , Hipocampo/metabolismo , Lipoproteínas/sangue , Masculino , Camundongos , Camundongos Knockout , Microinjeções , Neuritos/patologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacocinética , Placa Amiloide/patologia , Placa Amiloide/psicologia
19.
Circ Arrhythm Electrophysiol ; 8(6): 1481-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26429563

RESUMO

BACKGROUND: Hypercholesterolemia protects against ventricular fibrillation in patients with myocardial infarction. We hypothesize that hypercholesterolemia protects against ischemia-induced reentrant arrhythmias because of altered ion channel function. METHODS AND RESULTS: ECGs were measured in low-density lipoprotein receptor knockout (LDLr(-/-)), apolipoprotein A1 knockout (ApoA1(-/-)), and wild-type (WT) mice. Action potentials, calcium handling, and ion currents were recorded in ventricular myocytes. Gene expression was determined by quantitative polymerase chain reaction and Western blot. In isolated perfused hearts, regional ischemia was induced and arrhythmia inducibility was tested. Serum low-density lipoprotein (LDL) cholesterol was higher in LDLr(-/-) mice than in WT mice (2.6 versus 0.4 mmol/L), and high-density lipoprotein cholesterol was significantly lower in ApoA1(-/-) mice than in WT mice (0.3 versus 1.8 mmol/L). LDLr(-/-) and ApoA1(-/-) myocytes contained more cholesterol than WT (34.4±2.8 and 36.5±2.4 versus 25.5±0.4 µmol/g protein). The major potassium currents were not different in LDLr(-/-) and ApoA1(-/-) compared with WT mice. The L-type calcium current (I(Ca)), however, was larger in LDLr(-/-) and ApoA1(-/-) than in WT (12.1±0.7 and 12.8±0.8 versus 9.4±1.1 pA/pF). Calcium transient amplitude and fractional sarcoplasmic reticulum calcium release were larger and action potential and QTc duration longer in LDLr(-/-) and ApoA1(-/-) than in WT mice (action potential duration at 90% of repolarization: 102±4 and 106±3 versus 84±3.1 ms; QTc: 50.9±1.3 and 52.8±0.8 versus 43.5±1.2 ms). During ischemia, ventricular tachycardia/ventricular fibrillation inducibility was larger in WT than in LDLr(-/-) and ApoA1(-/-) hearts. Expression of sodium channel and Ca-handling genes were not significantly different between groups. CONCLUSIONS: Dyscholesterolemia is associated with action potential prolongation because of increased I(Ca) and reduces occurrence of reentrant arrhythmias during ischemia.


Assuntos
Hipercolesterolemia/complicações , Isquemia Miocárdica/complicações , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Potenciais de Ação , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Regulação da Expressão Gênica , Frequência Cardíaca , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Retículo Sarcoplasmático/metabolismo , Esfingolipídeos/sangue , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/genética , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
20.
Eur J Pharmacol ; 766: 76-85, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26420354

RESUMO

Recently, we showed that deficiency in apolipoprotein A-I (ApoA-I) sensitizes mice to diet-induced obesity, glucose intolerance and NAFLD. Here we investigated the potential involvement of ApoA-I in the pharmacological effects of metformin on glucose intolerance and NAFLD development. Groups of apoa1-deficient (apoa1(-/-)) and C57BL/6 mice fed western-type diet were either treated with a daily dose of 300 mg/kg metformin for 18 weeks or left untreated for the same period. Then, histological and biochemical analyses were performed. Metformin treatment led to a comparable reduction in plasma insulin levels in both C57BL/6 and apoa1(-/-) mice following intraperitoneal glucose tolerance test. However, only metformin-treated C57BL/6 mice maintained sufficient peripheral insulin sensitivity to effectively clear glucose following the challenge, as indicated by a [(3)H]-2-deoxy-D-glucose uptake assay in isolated soleus muscle. Similarly, deficiency in ApoA-I ablated the effect of metformin on hepatic lipid deposition and NAFLD development. Gene expression analysis indicated that the effects of ApoA-I on metformin treatment may be independent of adenosine monophosphate-activated protein kinase (AMPK) activation and de novo lipogenesis. Interestingly, metformin treatment reduced mitochondrial oxidative phosphorylation function only in apoa1(-/-) mice. Our data show that the role of ApoA-I in diabetes extends to the modulation of the pharmacological actions of metformin, a common drug for the treatment of type 2 diabetes.


Assuntos
Apolipoproteína A-I/deficiência , Glicemia/análise , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Animais , Apolipoproteína A-I/genética , Colesterol/sangue , Homeostase/efeitos dos fármacos , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...