Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(4): 1523-1544, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32666307

RESUMO

Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apolipoproteína A-I/genética , Doenças Cardiovasculares/genética , HDL-Colesterol/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/ultraestrutura , Doenças Cardiovasculares/patologia , Movimento Celular/genética , HDL-Colesterol/metabolismo , HDL-Colesterol/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fatores de Risco de Doenças Cardíacas , Humanos , Cetocolesteróis/genética , Cetocolesteróis/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/ultraestrutura , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação/genética , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Relação Estrutura-Atividade , Termodinâmica
2.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2726-2738, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28754383

RESUMO

BACKGROUND: Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) is a key protein for the transport of cholesterol from the vascular wall to the liver. The formation and structure of nascent HDL, composed of apoA-I and phospholipids, is critical to this process. METHODS: The HDL was assembled in vitro from apoA-I, cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at a 1:4:50 molar ratio. The structure of HDL was investigated in vitreous samples, frozen at cryogenic temperatures, as well as in negatively stained samples by transmission electron microscopy. Low resolution electron density maps were next used as restraints in biased Monte Carlo simulations of apolipoprotein A-I dimers, with an initial structure derived from atomic resolution X-ray structures. RESULTS: Two final apoA-I structure models for the full-length structure of apoA-I dimer in the lipid bound conformation were generated, showing a nearly circular, flat particle with an uneven particle thickness. CONCLUSIONS: The generated structures provide evidence for the discoidal, antiparallel arrangement of apoA-I in nascent HDL, and propose two preferred conformations of the flexible N-termini. GENERAL SIGNIFICANCE: The novel full-length structures of apoA-I dimers deepens the understanding to the structure-function relationship of nascent HDL with significance for the prevention of lipoprotein-related disease. The biased simulation method used in this study provides a powerful and convenient modelling tool with applicability for structural studies and modelling of other proteins and protein complexes.


Assuntos
Apolipoproteína A-I/química , Colesterol/química , Lipoproteínas HDL/química , Fosfatidilcolinas/química , Apolipoproteína A-I/ultraestrutura , Humanos , Lipoproteínas HDL/ultraestrutura , Microscopia Eletrônica , Fosfolipídeos/química , Conformação Proteica , Estrutura Secundária de Proteína
3.
Biochemistry ; 56(11): 1632-1644, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-27992182

RESUMO

Peptides derived from apolipoprotein A-I (apoA-I), the main component of high-density lipoprotein (HDL), constitute the main component of amyloid deposits that colocalize with atherosclerotic plaques. Here we investigate the molecular details of full-length, lipid-deprived apoA-I after assembly into insoluble aggregates under physiologically relevant conditions known to induce aggregation in vitro. Unmodified apoA-I is shown to remain soluble at pH 7 for at least 3 days, retaining its native α-helical-rich structure. Upon acidification to pH 4, apoA-I rapidly assembles into insoluble nonfibrillar aggregates lacking the characteristic cross-ß features of amyloid. In the presence of heparin, the rate and thioflavin T responsiveness of the aggregates formed at pH 4 increase and short amyloid-like fibrils are observed, which give rise to amyloid-characteristic X-ray reflections at 4.7 and 10 Å. Solid-state nuclear magnetic resonance (SSNMR) and synchrotron radiation circular dichroism spectroscopy of fibrils formed in the presence of heparin show they retain some α-helical characteristics together with new ß-sheet structures. Interestingly, SSNMR indicates a similar molecular structure of aggregates formed in the absence of heparin at pH 6 after oxidation of the three methionine residues, although their morphology is rather different from that of the heparin-derived fibrils. We propose a model for apoA-I aggregation in which perturbations of a four-helix bundle-like structure, induced by interactions of heparin or methionine oxidation, cause the partially helical N-terminal residues to disengage from the remaining, intact helices, thereby allowing self-assembly via ß-strand associations.


Assuntos
Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Heparina/química , Metionina/química , Agregados Proteicos , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/ultraestrutura , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heparina/metabolismo , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Metionina/metabolismo , Oxirredução , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência , Tiazóis/química
4.
Biochemistry ; 54(26): 4050-62, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26070092

RESUMO

Aggregation of proteins to fiberlike aggregates often involves a transformation of native monomers to ß-sheet-rich oligomers. This general observation underestimates the importance of α-helical segments in the aggregation cascade. Here, using a combination of experimental techniques and accelerated molecular dynamics simulations, we investigate the aggregation of a 43-residue, apolipoprotein A-I mimetic peptide and its E21Q and D26N mutants. Our study indicates a strong propensity of helical segments not to adopt cross-ß-fibrils. The helix-turn-helix monomeric conformation of the peptides is preserved in the mature fibrils. Furthermore, we reveal opposite effects of mutations on and near the turn region in the self-assembly of these peptides. We show that the E21-R24 salt bridge is a major contributor to helix-turn-helix folding, subsequently leading to abundant fibril formation. On the other hand, the K19-D26 interaction is not required to fold the native helix-turn-helix peptide. However, removal of the charged D26 residue decreases the stability of the helix-turn-helix monomer and consequently reduces the level of aggregation. Finally, we provide a more refined assembly model for the helix-turn-helix peptides from apolipoprotein A-I based on the parallel stacking of helix-turn-helix dimers.


Assuntos
Amiloide/química , Apolipoproteína A-I/química , Peptídeos/química , Agregados Proteicos , Sequência de Aminoácidos , Amiloide/genética , Amiloide/ultraestrutura , Apolipoproteína A-I/genética , Apolipoproteína A-I/ultraestrutura , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Estrutura Secundária de Proteína
5.
Arch Med Res ; 46(5): 351-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048453

RESUMO

Apolipoprotein A-I is the major protein in high-density lipoprotein (HDL) and plays an important role during the process of reverse cholesterol transport (RCT). Knowledge of the high-resolution structure of full-length apoA-I is vital for a molecular understanding of the function of HDL at the various steps of the RCT pathway. Due to the flexible nature of apoA-I and aggregation properties, the structure of full-length lipid-free apoA-I has evaded description for over three decades. Sequence analysis of apoA-I suggested that the amphipathic α-helix is the structural motif of exchangeable apolipoprotein, and NMR, X-ray and MD simulation studies have confirmed this. Different laboratories have used different methods to probe the secondary structure distribution and organization of both the lipid-free and lipid-bound apoA-I structure. Mutation analysis, synthetic peptide models, surface chemistry and crystal structures have converged on the lipid-free apoA-I domain structure and function: the N-terminal domain [1-184] forms a helix bundle while the C-terminal domain [185-243] mostly lacks defined structure and is responsible for initiating lipid-binding, aggregation and is also involved in cholesterol efflux. The first 43 residues of apoA-I are essential to stabilize the lipid-free structure. In addition, the crystal structure of C-terminally truncated apoA-I suggests a monomer-dimer conversation mechanism mediated through helix 5 reorganization and dimerization during the formation of HDL. Based on previous research, we have proposed a structural model for full-length monomeric apoA-I in solution and updated the HDL formation mechanism through three states. Mapping the known natural mutations on the full-length monomeric apoA-I model provides insight into atherosclerosis development through disruption of the N-terminal helix bundle or deletion of the C-terminal lipid-binding domain.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Aterosclerose/genética , Lipoproteínas HDL/biossíntese , Apolipoproteína A-I/genética , Apolipoproteínas/metabolismo , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Colesterol/farmacocinética , Humanos , Lipídeos , Ligação Proteica , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia
6.
Nanoscale ; 7(1): 171-8, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406726

RESUMO

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 µM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly "nanodisc" structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.


Assuntos
Apolipoproteína A-I/química , Moléculas de Adesão Celular/química , Lipopeptídeos/química , Lipídeos de Membrana/química , Oligopeptídeos/química , Motivos de Aminoácidos , Apolipoproteína A-I/ultraestrutura , Sítios de Ligação , Moléculas de Adesão Celular/ultraestrutura , Lipopeptídeos/ultraestrutura , Teste de Materiais , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas
7.
J Oleo Sci ; 63(11): 1203-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25341499

RESUMO

Nanodiscs are a relatively new class of nanoparticles composed of amphiphilic α-helical scaffold peptides and a phospholipid bilayer, and find potential applications in various fields. In order to identify the minimum number of amino acid residues of an amphiphilic α-helical peptide that leads to nanodisc formation, seven peptides differing in lengths (22-, 18-, 14-, 12-, 10-, 8-, and 6-mers) that mimic and modify the C-terminal domain of apoA-I (residues 220-241) were synthesized. At a concentration of 0.3 mM, the 6- and 8-mer peptides did not present any surface activity. In case of the 10-mer peptide, the aqueous surface tension initially decreased and reached a constant value of 51.9 mN/m with the 14-, 18-, and 22-mer peptides. Moreover, upon mixing the surface-active peptides (14-, 18-, and 22-mers) with dipalmitoylphosphatidylcholine (DMPC) liposomes (2.5:1, peptide : DMPC), the turbid DMPC liposome solution rapidly became transparent. Further analysis of this solution by negative-stain transmission electron microscopy (NS-TEM) indicated the presence of disk-like nanostructures. The average diameter of the nanodiscs formed was 9.5 ± 2.7 nm for the 22-mer, 8.1 ± 2.7 nm for the 18-mer, and 25.5 ± 8.5 nm for the 14-mer peptides. These results clearly demonstrate that the surface properties of peptides play a critical role in nanodisc formation. Furthermore, the minimum length of an amphiphilic peptide from the C-terminal of apoA-I protein that can lead to nanodisc formation is 14 amino acid residues.


Assuntos
Aminoácidos/química , Apolipoproteína A-I/química , Lipídeos/química , Nanopartículas/química , Peptídeos/química , 1,2-Dipalmitoilfosfatidilcolina , Sequência de Aminoácidos , Apolipoproteína A-I/síntese química , Apolipoproteína A-I/ultraestrutura , Bicamadas Lipídicas , Lipossomos/química , Lipossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tensão Superficial , Água
8.
PLoS One ; 9(4): e96150, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755625

RESUMO

Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M), which despite association with low plasma levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located to a region (residues 170 to 178) that contains several fibrillogenic apoA-I variants, including the L178H variant, and therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared several features with the L178H variant regarding increased helical content and low degree of ThT binding during prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not occur.


Assuntos
Apolipoproteína A-I/química , Amiloide/química , Amiloide/ultraestrutura , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Agregados Proteicos , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade , Tiazóis/química
9.
Arch Biochem Biophys ; 520(2): 81-7, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22381956

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) activity towards discoidal HDL with apoA-I was analyzed in conjunction with re-evaluation of conformational stability of apoA-I (Sparks et al., 1993). The reaction at water-lipid interface involves the formation of acyl-enzyme and cholesterol (Chol) as a nucleophilic agent can compete with water at deacylation step. Raw data on apparent kinetic parameters for LCAT activity toward discoidal HDL with fixed (Sparks et al., 1995) or varying (Sparks et al., 1998) palmitoyloleoylphosphatidylcholine (POPC) content fit the kinetic equation derived. At the increase of Chol content in complexes with fixed POPC, interfacial dissociation constant K(d)(∗) for LCAT penetration decreased and interfacial Michaelis constant K(m)(∗) did not change. Also, differences in stability and unfolding cooperativity between two domains in apoA-I molecule increased. At the increase of surface area of the complexes with varying POPC, K(d)(∗) increased, while K(m)(∗) decreased. For both lipidation states the rate constant of acyl-LCAT formation did not vary and any changes in K(m)(∗) are postulated to originate from the change(s) in association/dissociation rate constants of enzyme-substrate complex. Then, at the increase of POPC, the LCAT-POPC complex becomes more stable. ApoA-I seems to "activate" substrate by increasing the exposure of POPC ester bond to active center of LCAT.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas/química , Modelos Químicos , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Apolipoproteína A-I/ultraestrutura , Simulação por Computador , Ativação Enzimática , Lipoproteínas/ultraestrutura , Lipoproteínas HDL , Fosfatidilcolina-Esterol O-Aciltransferase/ultraestrutura , Relação Estrutura-Atividade
10.
PLoS One ; 6(7): e22532, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21811627

RESUMO

Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis.


Assuntos
Amiloide/metabolismo , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Heparina/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Metaloproteinase 12 da Matriz/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteólise/efeitos dos fármacos , Solventes , Acetato de Tetradecanoilforbol/farmacologia , Tiazóis/metabolismo , Triptofano/metabolismo
11.
J Lipid Res ; 52(1): 175-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978167

RESUMO

Plasma lipoprotein levels are predictors of risk for coronary artery disease. Lipoprotein structure-function relationships provide important clues that help identify the role of lipoproteins in cardiovascular disease. The compositional and conformational heterogeneity of lipoproteins are major barriers to the identification of their structures, as discovered using traditional approaches. Although electron microscopy (EM) is an alternative approach, conventional negative staining (NS) produces rouleau artifacts. In a previous study of apolipoprotein (apo)E4-containing reconstituted HDL (rHDL) particles, we optimized the NS method in a way that eliminated rouleaux. Here we report that phosphotungstic acid at high buffer salt concentrations plays a key role in rouleau formation. We also validate our protocol for analyzing the major plasma lipoprotein classes HDL, LDL, IDL, and VLDL, as well as homogeneously prepared apoA-I-containing rHDL. High-contrast EM images revealed morphology and detailed structures of lipoproteins, especially apoA-I-containing rHDL, that are amenable to three-dimensional reconstruction by single-particle analysis and electron tomography.


Assuntos
Lipoproteínas/ultraestrutura , Microscopia Eletrônica/métodos , Apolipoproteína A-I/sangue , Apolipoproteína A-I/ultraestrutura , Apolipoproteína E4/sangue , Apolipoproteína E4/ultraestrutura , Humanos , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Lipoproteínas HDL/ultraestrutura , Coloração Negativa
12.
Proc Natl Acad Sci U S A ; 107(5): 1977-82, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133843

RESUMO

Apolipoprotein A-I (apoA-I) is the major protein component of HDL, where it plays an important role in cholesterol transport. The deposition of apoA-I derived amyloid is associated with various hereditary systemic amyloidoses and atherosclerosis; however, very little is known about the mechanism of apoA-I amyloid formation. Methionine residues in apoA-I are oxidized via several mechanisms in vivo to form methionine sulfoxide (MetO), and significant levels of methionine oxidized apoA-I (MetO-apoA-I) are present in normal human serum. We investigated the effect of methionine oxidation on the structure, stability, and aggregation of full-length, lipid-free apoA-I. Circular dichrosim spectroscopy showed that oxidation of all three methionine residues in apoA-I caused partial unfolding of the protein and decreased its thermal stability, reducing the melting temperature (T(m)) from 58.7 degrees C for native apoA-I to 48.2 degrees C for MetO-apoA-I. Analytical ultracentrifugation revealed that methionine oxidation inhibited the native self association of apoA-I to form dimers and tetramers. Incubation of MetO-apoA-I for extended periods resulted in aggregation of the protein, and these aggregates bound Thioflavin T and Congo Red. Inspection of the aggregates by electron microscopy revealed fibrillar structures with a ribbon-like morphology, widths of approximately 11 nm, and lengths of up to several microns. X-ray fibre diffraction studies of the fibrils revealed a diffraction pattern with orthogonal peaks at spacings of 4.64 A and 9.92 A, indicating a cross-beta amyloid structure. This systematic study of fibril formation by full-length apoA-I represents the first demonstration that methionine oxidation can induce amyloid fibril formation.


Assuntos
Amiloide/biossíntese , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Metionina/química , Amiloide/química , Amiloide/ultraestrutura , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Termodinâmica , Tiazóis/metabolismo
13.
J Am Chem Soc ; 131(23): 8308-12, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19456103

RESUMO

Nanodiscs are phospholipid-protein complexes which are relevant to nascent high-density lipoprotein and are applicable as a drug carrier and a tool to immobilize membrane proteins. We evaluated the structure and dynamics of the nanoparticles consisting of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (apoA-I) with small-angle neutron scattering (SANS) and fluorescence methods and compared them with static/dynamic properties for large unilamellar vesicles. SANS revealed that the nanodisc includes a lipid bilayer with a thickness of 44 A and a radius of 37 A, in which each lipid occupies a smaller area than the reported molecular area of DMPC in vesicles. Fluorescence measurements suggested that DMPC possesses a lower entropy in nanodiscs than in vesicles, because apoA-I molecules, which surround the bilayer, force closer lipid packing, but allow water penetration to the acyl chain ends. Time-resolved SANS experiments revealed that nanodiscs represent a 20-fold higher lipid transfer via an entropically favorable process. The results put forward a conjunction of static/dynamic properties of nanodiscs, where the entropic constraints are responsible for the accelerated desorption of lipids.


Assuntos
Apolipoproteína A-I/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Nanoestruturas/ultraestrutura , Apolipoproteína A-I/ultraestrutura , Estrutura Molecular , Nêutrons , Espalhamento a Baixo Ângulo
14.
Biochem Biophys Res Commun ; 351(1): 223-8, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17056013

RESUMO

A variety of amyloid diseases are associated with fibrillar aggregates from N-terminal fragments of ApoA-I generated through a largely unexplored multi-step process. The understanding of the molecular mechanism is impaired by the lack of suitable amounts of the fibrillogenic polypeptides that could not be produced by recombinant methods so far. We report the production and the conformational analysis of recombinant ApoA-I 1-93 fragment. Similarly to the polypeptide isolated ex vivo, a pH switch from 7 to 4 induces a fast and reversible conformational transition to a helical state and leads to the identification of a key intermediate in the fibrillogenesis process. Limited proteolysis experiments suggested that the C-terminal region is involved in helix formation. The recombinant polypeptide generates fibrils at pH 4 on a time scale comparable with that of the native fragment. These findings open the way to studies on structural, thermodynamic, and kinetic aspects of ApoA-I fibrillogenesis.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Sítios de Ligação , Dimerização , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica
15.
Biophys J ; 90(12): 4345-60, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16581834

RESUMO

ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 angstroms and 78 angstroms by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Cristalografia/métodos , Lipoproteínas HDL/química , Lipoproteínas HDL/ultraestrutura , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Movimento (Física) , Conformação Proteica
16.
Biochemistry ; 44(38): 12681-9, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16171382

RESUMO

Models of apolipoprotein A-I (apo A-I), the main protein of high-density lipoprotein, predict that it contains 10 amphiphilic, alpha-helical segments connected by turns. We synthesized four peptides with two identical 18-residue, amphiphilic, alpha-helical segments (Anantharamaiah, G. M., et al. (1985) J. Biol. Chem. 260, 10248-10255) connected by putative turn sequences from apo A-I: (1) Ac-DWLKAFYDKVAEKLKEAFKVEPLRADWLKAFYDKVAEKLKEAF-NH2, (2) Ac-DWLKAFYDKVAEKLKEAFGLLPVLEDWLKAFYDKVAEKLKEAF-NH2, (3) Ac-DWLKAFYDKVAEKLKEAFKVQPYLDDWLKAFYDKVAEKLKEAF-NH2, and (4) Ac-DWLKAFYDKVAEKLKEAFNGGARLADWLKAFYDKVAEKLKEAF-NH2. Surprisingly, peptides 1-3 formed fibrils after incubation (37 degrees C, 10 mM sodium phosphate, pH 7.60), but in contrast to beta-sheet amyloid fibrils, these did not bind thioflavin T and they induced a blue shift in the spectrum of Congo red. CD (peptides 1-3) and FTIR (peptides 1 and 2) of the fibrils showed significant alpha-helical character. Synchrotron X-ray fiber diffraction on a magnetically aligned sample of 1 confirmed the alpha-helical character in the fibrils and indicated that the helical axes are oriented perpendicular to the fibril axis. In contrast, peptide 4, containing two Gly residues but no Pro in the turn, formed only a small amount of nonfibrillar precipitate after prolonged incubation. Peptide 4P (peptide 4 with a Pro in place of the central Ala) and peptide 5, containing a PEG block in lieu of the central turn, were similar to peptide 4 in not forming fibrils, possibly because the region linking the helices was unstructured. These studies indicate that varying turn sequences between longer amphiphilic alpha-helical segments can drive the structure of fibrils.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Sequência de Aminoácidos , Benzotiazóis , Dicroísmo Circular , Vermelho Congo/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazóis/química , Difração de Raios X
17.
Biochemistry ; 43(41): 13156-64, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15476409

RESUMO

Because of its role in reverse cholesterol transport, human apolipoprotein A-I is the most widely studied exchangeable apolipoprotein. Residues 1-43 of human apoA-I, encoded by exon 3 of the gene, are highly conserved and less well understood than residues 44-243, encoded by exon 4. In contrast to residues 44-243, residues 1-43 do not contain the 22 amino acid tandem repeats thought to form lipid binding amphipathic helices. To understand the structural and functional roles of the N-terminal region, we studied a synthetic peptide representing the first 44 residues of human apoA-I ([1-44]apoA-I). Far-ultraviolet circular dichroism spectra showed that [1-44]apoA-I is unfolded in aqueous solution. However, in the presence of n-octyl beta-d-glucopyranoside, a nonionic lipid mimicking detergent, above its critical micelle concentration ( approximately 0.7% at 25 degrees C), sodium dodecyl sulfate, an ionic detergent, above its CMC ( approximately 0.2%), trimethylamine N-oxide, a folding inducing organic osmolyte, or trifluoroethanol, an alpha-helix inducer, alpha-helical structure was formed in [1-44]apoA-I up to approximately 45%. Characterization by density gradient ultracentrifugation and visualization by negative staining electron microscopy demonstrated that [1-44]apoA-I interacts with dimyristoylphosphatidylcholine (DMPC) over a wide range of lipid:peptide ratios from 1:1 to 12:1 (w/w). At 1:1 DMPC:[1-44]apoA-I (w/w) ratio, discoidal complexes with composition approximately 4:1 (w/w) and approximately 100 A diameter were formed in equilibrium with free peptide. At higher ratios, discoidal complexes were shown to exist together with a heterogeneous population of lipid vesicles with peptide bound also in equilibrium with free peptide. When bound to DMPC, [1-44]apoA-I has approximately 60% helical structure, independent of whether it forms discoidal or vesicular complexes. This helical content is consistent with that of the predicted G helix (residues 8-33). Our data provide the first strong and direct evidence that the N-terminal region of apoA-I binds lipid and can form discoidal structures and a heterogeneous population of vesicles. In doing so, approximately 60% of this region folds into alpha-helix from random coil. The composition of the 100 A discoidal complex is approximately 5 [1-44]apoA-I and approximately 150 DMPC molecules per disk. The helix length of 5 [1-44]apoA-I molecules in lipid-bound form is just long enough to wrap around the DMPC bilayer disk once.


Assuntos
Apolipoproteína A-I/química , Lipídeos/química , Fragmentos de Peptídeos/química , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/ultraestrutura , Centrifugação com Gradiente de Concentração , Dicroísmo Circular , Detergentes , Glucosídeos/química , Humanos , Metilaminas/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Dodecilsulfato de Sódio/química , Soluções , Termodinâmica , Trifluoretanol/química , Água/química
18.
Biochemistry ; 42(45): 13260-8, 2003 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-14609337

RESUMO

Apolipoprotein A-I (apoA-I, 243 amino acids) is the major protein of high-density lipoproteins (HDL) that plays an important structural and functional role in lipid transport and metabolism. The central region of apoA-I (residues 60-183) is predicted to contain exclusively amphipathic alpha-helices formed from tandem 22-mer sequence repeats. To analyze the lipid-binding properties of this core domain, four terminally truncated mutants of apoA-I, Delta(1-41), Delta(1-59), Delta(1-41,185-243), and Delta(1-59,185-243), were expressed in baculovirus infected Sf-9 cells. The effects of mutations on the ability of apoA-I to form bilayer disk complexes with dimyristoyl phosphatidylcholine (DMPC) that resemble nascent HDL were analyzed by density gradient ultracentrifugation and electron microscopy (EM). The N-terminal deletion mutants, Delta(1-41) and Delta(1-59), showed altered lipid-binding ability as compared to plasma and wild-type apoA-I, and in the double deletion mutants, Delta(1-41, 185-243) and Delta(1-59, 185-243), the lipid binding was abolished. Thermal unfolding of variant apoA-I/DMPC complexes monitored by circular dichroism (CD) showed hysteresis and a shift in the melting curves by about -12 degrees C upon reduction in the heating rate from 1.0 to 0.067 K/min. This indicates an irreversible kinetically controlled transition with a high activation energy E(a) = 60 +/- 5 kcal/mol. CD and EM studies of the apoA-I/DMPC complexes at different pH demonstrated that changes in the net charge or in the charge distribution on the apoA-I molecule have critical effects on the conformation and lipid-binding ability of the protein.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Cromonas/química , Deleção de Sequência/genética , Apolipoproteína A-I/sangue , Apolipoproteína A-I/ultraestrutura , Cromonas/metabolismo , Dicroísmo Circular , Variação Genética , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Cinética , Substâncias Macromoleculares , Microscopia Eletrônica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/ultraestrutura , Ligação Proteica/genética , Dobramento de Proteína , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestrutura , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Termodinâmica
19.
Biochemistry ; 41(33): 10529-39, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12173940

RESUMO

To probe the structure and stability of the central region of lipid-free apolipoprotein (apo) A-I (residues 123-165), we studied the effects of four mutations made in this region on the conformation, stability, dimyristoylphosphatidylcholine (DMPC) binding kinetics, and size of discoidal reconstituted high-density lipoprotein (rHDL) particles. The apoA-I deletion delta(144-165) leads to a red shift in the wavelength of maximum fluorescence and a reduction in the alpha-helical content, the stability, the initial rate of association with DMPC liposomes, and the size of the discoidal particles. The data are consistent with the helical structure of residues 144-165, and the deletion appears to perturb the tertiary organization of the N-terminal half of apoA-I. In contrast, the deletion of the adjacent region, delta(136-143), leads to stabilization without altering the number of residues in the helical conformation or the initial rate of association with DMPC liposomes. The quadruple substitution E125K/E128K/K133E/E139K leads to approximately 17 additional residues in the helical conformation and an increase in the stability, the initial rate of association with DMPC liposomes, and the size of the rHDL particles. The findings are consistent with the disordered structure of the segment of residues 123-142, which becomes helical as a result of the quadruple mutation or upon lipid binding. The naturally occurring mutation L141R (also associated with coronary heart disease) that is located in this segment does not change the protein conformation but leads to a reduced stability and a decreased rate of association with DMPC liposomes that may relate to the observed altered functions of this mutant.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Lipídeos/genética , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/genética , Deleção de Sequência , Substituição de Aminoácidos/genética , Apolipoproteína A-I/isolamento & purificação , Apolipoproteína A-I/ultraestrutura , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Dimiristoilfosfatidilcolina/química , Guanidina/química , Temperatura Alta , Humanos , Cinética , Lipídeos/química , Lipossomos/química , Tamanho da Partícula , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Ligação Proteica/genética , Desnaturação Proteica/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência
20.
Atheroscler Suppl ; 3(4): 39-47, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12573362

RESUMO

High density lipoproteins (HDLs) originate as lipid-free or lipid-poor apolipoproteins that acquire most of their lipid in the extracellular space. They accept phospholipids from cells in a process promoted by the ATP binding cassette A1 transporter to form prebeta-migrating discoidal HDL that are efficient acceptors of cholesterol released from cell membranes. The cholesterol in discoidal HDL is esterified by lecithin:cholesterol acyltransferase (LCAT) in a process that converts the prebeta-migrating disc into an alpha-migrating, spherical HDL. Spherical HDL are further remodelled by cholesteryl ester transfer protein (CETP) that transfers cholesteryl esters from HDL to other lipoproteins and by hepatic lipase that hydrolyses HDL triglyceride in processes that reduce HDL size and lead to the dissociation of prebeta-migrating, lipid-poor apolipoprotein (apo)A-I from the particle. Prebeta-migrating, lipid-poor apoA-I is also generated as a product of the remodelling of HDL by phospholipid transfer protein. Thus, apoA-I cycles between lipid-poor and lipid associated forms as part of a highly dynamic metabolism of HDL. The other main HDL apolipoprotein, apoA-II is incorporated into apoA-I-containing particles in a process of particle fusion mediated by LCAT. Extracellular assembly and remodelling of HDL not only plays a major role in HDL regulation but also provides potential targets for therapeutic intervention. One example of this is the development of inhibitors of CETP.


Assuntos
Arteriosclerose/patologia , Arteriosclerose/fisiopatologia , Proteínas Sanguíneas/farmacologia , Lipoproteínas HDL/efeitos dos fármacos , Lipoproteínas HDL/ultraestrutura , Apolipoproteína A-I/efeitos dos fármacos , Apolipoproteína A-I/fisiologia , Apolipoproteína A-I/ultraestrutura , Humanos , Lipoproteínas HDL/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...