Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144.516
Filtrar
1.
Assay Drug Dev Technol ; 22(5): 217-228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967602

RESUMO

Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , MicroRNAs , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Fluoruracila/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968108

RESUMO

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Assuntos
Angiotensina II , COVID-19 , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , SARS-CoV-2 , Humanos , Angiotensina II/farmacologia , COVID-19/virologia , COVID-19/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Apoptose/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , MicroRNAs/metabolismo , MicroRNAs/genética , Citocinas/metabolismo
3.
Clin Exp Rheumatol ; 42(7): 1387-1397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976290

RESUMO

OBJECTIVES: The imbalance between apoptosis and proliferation in fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of rheumatoid arthritis (RA). This study aims to investigate the potential of all-trans retinoic acid (ATRA) as a supplementary therapeutic agent alongside methotrexate (MTX) for RA, by examining its ability to inhibit synovial cell proliferation and enhance apoptosis through the ROS-JNK signalling pathway. METHODS: The viability, apoptosis, and autophagy levels of human rheumatoid arthritis fibroblast-like synovial cells (HFLS-RA) were evaluated, while ROS generation was measured through the DCFH-DA fluorescence microplate assay. Western blotting was used to analyse the expression levels of JNK signalling pathway-related proteins. To assess therapeutic potential in vivo, a collagen-induced arthritis (CIA) model was established in Wistar rats. RESULTS: Small doses of MTX did not significantly affect the viability of HFLS-RAs or induce apoptosis. However, when ATRA was added to the treatment, the therapy markedly inhibited cell proliferation and induced apoptosis and excessive autophagy. Mechanistically, ATRA activated the ROS/JNK signalling pathway in HFLS-RAs. ROS scavengers and JNK inhibitors significantly attenuated ATRA-induced apoptosis and autophagy. In vivo, the combination therapy demonstrated a remarkable enhancement of the anti-arthritic efficacy in CIA rats. CONCLUSIONS: The ability of ATRA to inhibit proliferation in RA FLSs through autophagy and apoptosis underscores its potential as a supplementary therapeutic agent alongside MTX for RA, particularly when compared to the limited impact of MTX on these processes. This combined strategy holds promise for enhancing therapeutic outcomes and warrants further investigation in the management of RA.


Assuntos
Apoptose , Artrite Experimental , Artrite Reumatoide , Autofagia , Proliferação de Células , Metotrexato , Ratos Wistar , Espécies Reativas de Oxigênio , Sinoviócitos , Tretinoína , Tretinoína/farmacologia , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Metotrexato/farmacologia , Autofagia/efeitos dos fármacos , Animais , Humanos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/patologia , Sinoviócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Antirreumáticos/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos , Linhagem Celular
4.
Virology ; 597: 110161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981317

RESUMO

Epstein-Barr virus (EBV) is linked to lymphoma and epithelioma but lacks drugs specifically targeting EBV-positive tumors. BamHI A Rightward Transcript (BART) miRNAs are expressed in all EBV-positive tumors, suppressing both lytic infection and host cell apoptosis. We identified suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylase enzymes, as an agent that suppresses BART promoter activity and transcription of BART miRNAs. SAHA treatment demonstrated a more pronounced inhibition of cell proliferation in EBV-positive cells compared to EBV-negative cells, affecting both p53 wild-type and mutant gastric epithelial cells. SAHA treatment enhanced lytic infection in wild-type EBV-infected cells, while also enhancing cell death in BZLF1-deficient EBV-infected cells. It reduced BART gene expression by 85% and increased the expression of proapoptotic factors targeted by BART miRNAs. These findings suggest that SAHA not only induces lytic infection but also leads to cell death by suppressing BART miRNA transcription and promoting the apoptotic program.


Assuntos
Apoptose , Herpesvirus Humano 4 , Ácidos Hidroxâmicos , MicroRNAs , Vorinostat , Vorinostat/farmacologia , Apoptose/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Regiões Promotoras Genéticas , Proliferação de Células/efeitos dos fármacos
5.
Ren Fail ; 46(2): 2378212, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011587

RESUMO

PURPOSE: The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS: Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS: Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS: In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Cisplatino , Dioxóis , Rim , Lignanas , Ratos Wistar , Testículo , Animais , Masculino , Lignanas/farmacologia , Lignanas/uso terapêutico , Cisplatino/toxicidade , Cisplatino/efeitos adversos , Ratos , Dioxóis/farmacologia , Antioxidantes/farmacologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Antineoplásicos/toxicidade
6.
Metallomics ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955388

RESUMO

Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.


Assuntos
Antineoplásicos , Irídio , Mitocôndrias , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Células Hep G2 , Camundongos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Apoptose/efeitos dos fármacos , Oxiquinolina/farmacologia , Oxiquinolina/química , Oxiquinolina/análogos & derivados , Camundongos Endogâmicos BALB C , Mitofagia/efeitos dos fármacos , Camundongos Nus
7.
J Med Food ; 27(7): 651-660, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975681

RESUMO

Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1ß], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1ß, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.


Assuntos
Apoptose , Compostos Benzidrílicos , Dano ao DNA , Disruptores Endócrinos , Ácido Gálico , Ovário , Estresse Oxidativo , Fenóis , Animais , Feminino , Ácido Gálico/farmacologia , Compostos Benzidrílicos/toxicidade , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Ratos , Dano ao DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Substâncias Protetoras/farmacologia , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Ratos Sprague-Dawley , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Progesterona , Humanos , Antioxidantes/farmacologia , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo
8.
Theranostics ; 14(10): 3909-3926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994036

RESUMO

Background: Aurora kinase A (AURKA) is a potent oncogene that is often aberrantly expressed during tumorigenesis, and is associated with chemo-resistance in various malignancies. However, the role of AURKA in chemo-resistance remains largely elusive. Methods: The cleavage of AURKA upon viral infection or apoptosis stimuli was assesed by immunoblotting assays in several cancer cells or caspase deficient cell line models. The effect of AURKA cleavage at Asp132 on mitosis was explored by live cell imaging and immunofluorescence staining experiments. The role of Asp132-cleavage of AURKA induced by the chemotherapy drug paclitaxel was investigated using TUNEL, immunohistochemistry assay in mouse tumor xenograft model and patient tissues. Results: The proteolytic cleavage of AURKA at Asp132 commonly occurs in several cancer cell types, regardless of viral infection or apoptosis stimuli. Mechanistically, caspase 3/7/8 cleave AURKA at Asp132, and the Asp132-cleaved forms of AURKA promote cell apoptosis by disrupting centrosome formation and bipolar spindle assembly in metaphase during mitosis. The AURKAD132A mutation blocks the expression of cleaved caspase 3 and EGR1, which leads to reduced therapeutic effects of paclitaxel on colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model and cancer patients. Conclusions: This study reveals that caspase-mediated AURKAD132 proteolysis is essential for paclitaxel to elicit cell apoptosis and indicates that AURKAD132 is a potential key target for chemotherapy.


Assuntos
Apoptose , Aurora Quinase A , Paclitaxel , Paclitaxel/farmacologia , Aurora Quinase A/metabolismo , Animais , Humanos , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Caspases/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mitose/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Feminino , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
9.
Int J Mol Med ; 54(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994756

RESUMO

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem­like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti­tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)­resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit­8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT­related proteins and stem cell markers after sphere formation. Parental cells and drug­resistant cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX­resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug­resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX­resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX­resistant ESCC and could be a promising agent for the treatment of PTX­resistant ESCC cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Luteolina , Paclitaxel , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Luteolina/farmacologia , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Masculino
10.
Int J Mol Med ; 54(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994762

RESUMO

Age­related macular degeneration (AMD) is an ocular disease that threatens the visual function of older adults worldwide. Key pathological processes involved in AMD include oxidative stress, inflammation and choroidal vascular dysfunction. Retinal pigment epithelial cells and Müller cells are most susceptible to oxidative stress. Traditional herbal medicines are increasingly being investigated in the field of personalized medicine in ophthalmology. Triptonide (Tn) is a diterpene tricyclic oxide, the main active ingredient in the extract from the Chinese herbal medicinal plant Tripterygium wilfordii, and is considered an effective immunosuppressant and anti­inflammatory drug. The present study investigated the potential beneficial role of Tn in retinal oxidative damage in order to achieve personalized treatment for early AMD. An oxidative stress model of retinal cells induced by H2O2 and a retinal injury model of mice induced by light and N­Methyl­D­aspartic acid were constructed. In vitro, JC­1 staining, flow cytometry and apoptosis assay confirmed that low concentrations of Tn effectively protected retinal cells from oxidative damage, and reverse transcription­quantitative PCR and western blotting analyses revealed that Tn reduced the expression of retinal oxidative stress­related genes and inflammatory factors, which may depend on the PI3K/AKT/mTOR­induced Nrf2 signaling pathway. In vivo, by retinal immunohistochemistry, hematoxylin and eosin staining and electroretinogram assay, it was found that retinal function and structure improved and choroidal neovascularization was significantly inhibited after Tn pretreatment. These results suggested that Tn is an efficient Nrf2 activator, which can be expected to become a new intervention for diseases such as AMD, to inhibit retinal oxidative stress damage and pathological neovascularization.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Retina , Transdução de Sinais , Estresse Oxidativo/efeitos dos fármacos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Triterpenos/farmacologia , Masculino , Apoptose/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Linhagem Celular , Peróxido de Hidrogênio
11.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000112

RESUMO

Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-ß-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.


Assuntos
Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Taninos Hidrolisáveis , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Transdução de Sinais , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Taninos Hidrolisáveis/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Células PC-3 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Docetaxel/farmacologia
12.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001564

RESUMO

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Assuntos
Apoptose , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Tretinoína , Animais , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Tretinoína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Hiperóxia/metabolismo , Hiperóxia/tratamento farmacológico , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
13.
Biomed Res Int ; 2024: 6231095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015603

RESUMO

Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.


Assuntos
Apoptose , Benzoquinonas , Proliferação de Células , Neoplasias do Colo , Fluoruracila , Humanos , Fluoruracila/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proliferação de Células/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Caspase 9/metabolismo , Caspase 9/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo
14.
Zhen Ci Yan Jiu ; 49(7): 678-685, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020485

RESUMO

OBJECTIVES: To investigate the impact of combined treatment of colorectal cancer (CRC) with electroacupuncture (EA) and capeOX (combined administration of fluorouracil, oxaliplatin and capecitabine) on the tumor volume, weight, spleen coefficient, apoptosis and ferroptosis of tumor tissue, and liver and kidney functions in nude mice with CRC, so as to explore its mechanisms underlying inhibiting CRC and alleviating toxic reactions of capeOX. METHODS: Female Balb/c nude mice were randomly assigned to 3 groups:model, capeOX, and EA+capeOX, with 8 nude mice in each group. The CRC model was established by subcutaneous injection of colon cancer cells at the right inguinal region. Nude mice of the capeOX group received intraperitoneal injection of oxaliplatin for 1 day and gavage of capecitabine from day 2 to day 7. EA (1 mA, 2 Hz/100 Hz) was applied to bilateral "Zusanli" (ST36) for 20 min, once daily for 7 days. During the interven-tion, the tumor volume and weight were measured every day, and at the end of intervention, the weight of the tumor tissue and spleen were measured, with tumor volume difference and spleen coefficient calculated. The proportion of apoptotic cells was measured by flow cytometry, and the contents of serum malondialdehyde (MDA), alanine aninotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) were detected using ELISA. The expression level of glutathione peroxidase 4 (GPX4, a key regulator for ferroptosis) protein of the tumor tissue was determined using Western blot. RESULTS: Compared to the model group, both the capeOX group and EA+capeOX group showed a decrease in the tumor volume (on day 3 and 4 in the capeOX group, and from day 2 to 7 in the EA+capeOX group) and body weight (P<0.05, on day 3 to 7 in the EA+capeOX group and on day 2 to 7 in the capeOX group), being evidently lower in the tumor volume on day 7 in the EA+capeOX than in the capeOX group (P<0.05), and evidently higher in the body weight on day 6 and 7 in the EA+capeOX group than in the capeOX group (P<0.05). In comparison with the model group, the tumor volume difference, tumor weight and spleen coefficient in both capeOX and EA+capeOX groups were significantly decreased (P<0.05), and MDA content in EA+capeOX group was significantly decreased (P<0.05), while the contents of ALT, BUN and Cr in the capeOX group, the proportion of apoptotic cells in both capeOX and EA+capeOX groups, and the GPX4 expression level in the EA+capeOX group were all significantly increased (P<0.05). The tumor volume difference, tumor weight, and contents of MDA, ALT, AST, BUN and Cr in the EA+capeOX group were markedly lower than in the capeOX group (P<0.05), while the spleen coefficient, proportion of apoptotic cells and GPX4 expression level in the EA+capeOX group were markedly higher than those in the capeOX group (P<0.05). CONCLUSIONS: EA of ST36 can enhance the effect of capeOX in inhibiting colorectal cancer growth in nude mice with CRC, which may be related with its functions in promoting tumor cell apoptosis, inhibiting ferroptosis, and modulating immune tolerance. In addition, EA can lower the side effects of capeOX in hematopoietic and immune, liver, and kidney functions.


Assuntos
Pontos de Acupuntura , Apoptose , Neoplasias Colorretais , Eletroacupuntura , Ferroptose , Camundongos Endogâmicos BALB C , Camundongos Nus , Animais , Camundongos , Ferroptose/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
15.
Mol Biol Rep ; 51(1): 819, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017801

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS: SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION: These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.


Assuntos
Apoptose , Sobrevivência Celular , NF-kappa B , Estresse Oxidativo , Oxidopamina , Doença de Parkinson , Espécies Reativas de Oxigênio , Sesquiterpenos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Sesquiterpenos/farmacologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Oxidopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia
16.
Sci Rep ; 14(1): 16322, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009704

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of blindness. AMD is currently incurable; the best solution is to prevent its occurrence. To develop drugs for AMD, it is crucial to have a model system that mimics the symptoms and mechanisms in patients. It is most important to develop safer and more effective anti-AMD drug. In this study, the dose of A2E and the intensity of blue light were evaluated to establish an appropriate atrophic in vitro model of AMD and anti-AMD effect and therapeutic mechanism of Codonopsis lanceolata. The experimental groups included a control group an AMD group treated with A2E and blue light, a lutein group treated with 25 µM lutein after AMD induction, and three groups treated with different doses of C. lanceolata (10, 20, and 50 µg/mL) after AMD induction. Intrinsic apoptotic pathway (Bcl-2 family), anti-oxidative system (Keap1/Nrf2/HO-1 antioxidant response element), and anti-carbonyl effect (4-hydroxynonenal [4-HNE]) were evaluated using immunofluorescence, MTT, TUNEL, FACS, and western blotting analyses. A2E accumulation in the cytoplasm of ARPE-19 cells depending on the dose of A2E. Cell viability of ARPE-19 cells according to the dose of A2E and/or blue light intensity. The population of apoptotic or necrotic cells increased based on the A2E dose and blue light intensity. Codonopsis lanceolata dose-dependently prevented cell death which was induced by A2E and blue light. The antiapoptotic effect of that was caused by activating Keap1/Nrf2/HO-1 pathway, suppressing 4-HNE, and modulating Bcl-2 family proteins like increase of antiapoptotic proteins such as Bcl-2 and Bcl-XL and decrease of proapoptotic protein such as Bim. Based on these findings, 30 µM A2E and 20 mW/cm2 blue light on adult retinal pigment epithelium-19 cells was an appropriate condition for AMD model and C. lanceolata shows promise as an anti-AMD agent.


Assuntos
Apoptose , Codonopsis , Degeneração Macular , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Codonopsis/química , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linhagem Celular , Aldeídos/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Luz/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Nanoscale ; 16(28): 13580-13596, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38953490

RESUMO

Melanoma is the most invasive and lethal form of skin cancer that arises from the malignant transformation of specialized pigment-producing cell melanocytes. Nanomedicine represents an important prospect to mitigate the difficulties and provide significant benefits to cure melanoma. In the present study, we investigated in vitro and in vivo therapeutic efficacies of copper nitroprusside analogue nanoparticles (abbreviated as CuNPANP) towards melanoma. Initially, in vitro anti-cancer activities of CuNPANP towards melanoma cells (B16F10) were evaluated by several experiments such as [methyl-3H]-thymidine incorporation assay, cell cycle and apoptosis assays using FACS analysis, ROS generation using DCFDA, DHE and DAF2A reagents, internalization of nanoparticles through ICP-OES analysis, co-localization of the nanoparticles using confocal microscopy, JC-1 staining to investigate the mitochondrial membrane potential (MMP) and immunofluorescence studies to analyze the expressions of cytochrome-c, Ki-67, E-cadherin as well as phalloidin staining to analyze the cytoskeletal integrity. Further, the in vivo therapeutic effectiveness of the nanoparticles was established towards malignant melanoma by inoculating B16F10 cells in the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of CuNPANP inhibited tumor growth and increased the survivability of melanoma mice. The in vivo immunofluorescence studies (Ki-67, CD-31, and E-cadherin) and TUNEL assay further support the anti-cancer and apoptosis-inducing potential of CuNPANP, respectively. Finally, various signaling pathways and molecular mechanisms involved in anti-cancer activities were further evaluated by Western blot analysis. The results altogether indicated the potential use of copper-based nanomedicines for the treatment of malignant melanoma.


Assuntos
Apoptose , Cobre , Melanoma Experimental , Camundongos Endogâmicos C57BL , Nitroprussiato , Animais , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Apoptose/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Nitroprussiato/farmacologia , Nitroprussiato/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
18.
PeerJ ; 12: e17619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952980

RESUMO

Background: Andrographolide (Andro), an extract of Andrographis paniculate (Burm.f.) Wall. ex Nees (Acanthaceae), possesses diverse biologically active properties. However, the precise mechanisms and effects of Andro on pancreatic cancer (PC) remain unclear. Methods: The cytotoxic potential of Andro and underlying mechanism towards PC cells was investigated through in vitro experiments and a xenograft mouse model. PC cells were first subjected to varying concentrations of Andro. The reactive oxygen species (ROS) was assessed using flow cytometry and DCFH-DA staining. The apoptosis rate was detected by flow cytometry. Additionally, western blot was applied to evaluate the expression levels of cleaved-caspase-3, DJ-1, LC3-I, LC3-II, and p62. To further elucidate the involvement of ROS accumulation and autophagy, we employed N-acetylcysteine as a scavenger of ROS and 3-Methyladenine as an inhibitor of autophagy. Results: Andro demonstrated potent anti-proliferative effects on PC cells and induced apoptosis, both in vitro and in vivo. The cytotoxicity of Andro on PC cells was counteracted by DJ-1 overexpression. The reduction in DJ-1 expression caused by Andro led to ROS accumulation, subsequently inhibiting the growth of PC cells. Furthermore, Andro stimulated cytoprotective autophagy, thus weakening the antitumor effect. Pharmacological blockade of autophagy further enhanced the antitumor efficacy of Andro. Conclusion: Our study indicated that ROS accumulation induced by the DJ-1 reduction played a key role in Andro-mediated PC cell inhibition. Furthermore, the protective autophagy induced by the Andro in PC cells is a mechanism that needs to be addressed in future studies.


Assuntos
Apoptose , Autofagia , Diterpenos , Neoplasias Pancreáticas , Proteína Desglicase DJ-1 , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Diterpenos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Autofagia/efeitos dos fármacos , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
19.
Gen Physiol Biophys ; 43(4): 291-300, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953572

RESUMO

This study aims to determine the effect of sevoflurane (Sev) on nasopharyngeal carcinoma (NPC) in malignant behavior and mitochondrial membrane potential (MMP). NPC cells (5-8F and CNE2) were exposed to Sev at different concentrations and then tested for proliferation by CCK-8 and colony formation assays, apoptosis by flow cytometry, and invasion and migration by Transwell assays. In addition, the Warburg effect was examined by measurements of glucose consumption, lactic acid production, and adenosine triphosphate (ATP). Mitochondrial function was evaluated by reactive oxygen species (ROS) production, oxidative stress-related indexes, and mitochondrial membrane potential. Sev suppressed 5-8F and CNE2 cell proliferation, invasion, and migration, and enhanced apoptosis. Moreover, Sev dampened the Warburg effect by reducing glucose consumption, lactic acid production, and ATP, as well as decreasing hexokinase 2 and pyruvate kinases type M2 protein expressions. Also, Sev induced ROS production and malondialdehyde content and reduced superoxide and glutathione peroxidase levels. Finally, Sev caused damage to mitochondrial homeostasis through induction of cleaved caspase-3, cleaved caspase-9, and cytochrome c protein expression and reduction of MMP. Sev inhibits the malignant behavior of NPC cells by regulating MMP.


Assuntos
Potencial da Membrana Mitocondrial , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Sevoflurano , Sevoflurano/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga
20.
Oncol Res ; 32(7): 1231-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948023

RESUMO

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Assuntos
Apoptose , Proliferação de Células , Sinergismo Farmacológico , Fluoruracila , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...