Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956598

RESUMO

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Assuntos
Aquaporina 4 , Epêndima , Hidrocefalia , Camundongos Knockout , Microglia , Animais , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Microglia/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Antígenos CD11/metabolismo , Antígenos CD11/genética , Camundongos Endogâmicos C57BL
2.
Neurosci Res ; 188: 28-38, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375656

RESUMO

The aqueduct of Sylvius connects the third with the fourth ventricle and is surrounded by the Periaqueductal Grey. Here, we report a novel niche of cells in the dorsal section of the aqueduct, hereby named dorsal aqueduct niche or DAN, by applying a battery of selective markers and transgenic mouse lines. The somata of DAN cells are located toward the lumen of the ventricle forming multiple layers in close association with the cerebrospinal fluid (CSF). A single process emerges from the soma and run with the blood vessels. Cells of the DAN express radial glia/stem cell markers such as GFAP, vimentin and nestin, and the glutamate transporter GLAST or the oligodendrocyte precursor/pericyte marker NG2, thereby suggesting their potential for the generation of new cells. Morphologically, DAN cells resemble tanycytes of the third ventricle, which transfer biochemical signals from the CSF to the central nervous system and display proliferative capacity. The aqueduct ependymal lining can proliferate as observed by the integration of BrdU and expression of Ki67. Thus, the dorsal section of the aqueduct of Sylvius possesses cells that may act a niche of new glial cells in the adult mouse brain.


Assuntos
Aqueduto do Mesencéfalo , Terceiro Ventrículo , Animais , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Terceiro Ventrículo/metabolismo , Neuroglia/metabolismo , Epêndima/metabolismo , Camundongos Transgênicos
3.
Clin Neuropathol ; 39(6): 288-299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589127

RESUMO

AIMS: We delineate and review the central nervous system (CNS) pathology of amniotic rupture sequence (ARS) and its extraneural associations. MATERIALS AND METHODS: We review a consecutive 15-year fetal/neonatal autopsy series for cases of ARS to document its morphology and correlates. RESULTS: We retrieved 15 cases of ARS with complete dissection of the CNS. Seven lacked craniofacial abnormalities; in these the brain and spinal cord were normal. Eight had acalvaria or encephalocele, with facial clefts. All 8 had abnormal brains. Two cases demonstrated normal cerebral lobation with aqueductal stenosis/atresia (AS) and secondary changes. Two cases demonstrated holoprosencephaly and AS. Four other cases had large encephaloceles covered by amnion and extensive secondary change, 3 of which had absent olfactory bulbs, folded and thinned cerebral cortex, reduced thalami, and irregular ventricular systems with superimposed gliosis and hemorrhage. In these, the aqueduct or rostral 4th ventricle was either atretic or occluded by heterotopic neuronal masses. CONCLUSION: CNS pathology in ARS is strongly associated with craniofacial clefts. There is a non-random association between AS, holoprosencephaly, and ARS. Some of the anomalies may be due to abnormal induction events, vascular instability, and the mechanical effects of craniofacial maldevelopment.


Assuntos
Âmnio/patologia , Sistema Nervoso Central/patologia , Hidrocefalia/patologia , Encéfalo/patologia , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/metabolismo , Feminino , Feto/patologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Hidrocefalia/metabolismo , Masculino
4.
Mol Genet Genomic Med ; 7(9): e892, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31393094

RESUMO

BACKGROUND: Congenital hydrocephalus (CH) is a highly morbid disease that features enlarged brain ventricles and impaired cerebrospinal fluid homeostasis. Although early linkage or targeted sequencing studies in large multigenerational families have localized several genes for CH, the etiology of most CH cases remains unclear. Recent advances in whole exome sequencing (WES) have identified five new bona fide CH genes, implicating impaired regulation of neural stem cell fate in CH pathogenesis. Nonetheless, in the majority of CH cases, the pathological etiology remains unknown, suggesting more genes await discovery. METHODS: WES of family members of a sporadic and familial form of severe L1CAM mutation-negative CH associated with aqueductal stenosis was performed. Rare genetic variants were analyzed, prioritized, and validated. De novo copy number variants (CNVs) were identified using the XHMM algorithm and validated using qPCR. Xenopus oocyte experiments were performed to access mutation impact on protein function and expression. RESULTS: A novel inherited protein-damaging mutation (p.Pro605Leu) in SLC12A6, encoding the K+ -Cl- cotransporter KCC3, was identified in both affected members of multiplex kindred CHYD110. p.Pro605 is conserved in KCC3 orthologs and among all human KCC paralogs. The p.Pro605Leu mutation maps to the ion-transporting domain, and significantly reduces KCC3-dependent K+ transport. A novel de novo CNV (deletion) was identified in SLC12A7, encoding the KCC3 paralog and binding partner KCC4, in another family (CHYD130) with sporadic CH. CONCLUSION: These findings identify two novel, related genes associated with CH, and implicate genetically encoded impairments in ion transport for the first time in CH pathogenesis.


Assuntos
Aqueduto do Mesencéfalo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hidrocefalia/genética , Mutação , Simportadores/genética , Animais , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Masculino , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Simportadores/metabolismo , Sequenciamento do Exoma , Xenopus laevis
5.
Congenit Anom (Kyoto) ; 58(3): 93-98, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28976018

RESUMO

Cerebrospinal fluid is thought to be mainly absorbed into arachnoid granules in the subarachnoid space and drained into the sagittal sinus. However, some observations such as late outbreak of arachnoid granules in fetus brain and recent cerebrospinal fluid movements study by magnetic resonance images, conflict with this hypothesis. In this study, we investigated the movement of cerebrospinal fluid in fetuses. Several kinds of fluorescent probes with different molecular weights were injected into the lateral ventricle or subarachnoid space in mouse fetuses at a gestational age of 13 days. The movements of the probes were monitored by live imaging under fluorescent microscope. Following intraventricular injection, the probes dispersed into the 3rd ventricle and aqueduct immediately, but did not move into the 4th ventricle and spinal canal. After injection of low and high molecular weight conjugated probes, both probes dispersed into the brain but only the low molecular weight probe dispersed into the whole body. Following intra-subarachnoid injection, both probes diffused into the spinal canal gradually. Neither probe dispersed into the brain and body. The probe injected into the lateral ventricle moved into the spinal central canal by the fetus head compression, and returned into the aqueduct by its release. We conclude this study as follows: (i) The movement of metabolites in cerebrospinal fluid in the ventricles will be restricted by molecular weight; (ii) Cerebrospinal fluid in the ventricle and in the subarachnoid space move differently; and (iii) Cerebrospinal fluid may not appear to circulate. In the event of high intracranial pressure, the fluid may move into the spinal canal.


Assuntos
Aqueduto do Mesencéfalo/metabolismo , Ventrículos Cerebrais/metabolismo , Corantes Fluorescentes/metabolismo , Medula Espinal/metabolismo , Espaço Subaracnóideo/metabolismo , Seio Sagital Superior/metabolismo , Animais , Transporte Biológico , Aqueduto do Mesencéfalo/anatomia & histologia , Ventrículos Cerebrais/anatomia & histologia , Feminino , Feto , Corantes Fluorescentes/administração & dosagem , Idade Gestacional , Injeções Intraventriculares , Pressão Intracraniana/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Fluorescência , Peso Molecular , Gravidez , Medula Espinal/anatomia & histologia , Espaço Subaracnóideo/anatomia & histologia , Seio Sagital Superior/anatomia & histologia
6.
Acta Radiol ; 59(8): 988-996, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29141450

RESUMO

Background The cerebral aqueduct is a central conduit for cerebrospinal fluid (CSF), and non-invasive quantification of CSF flow in the aqueduct may be an important tool for diagnosis and follow-up of treatment. Magnetic resonance (MR) methods at clinical field strengths are limited by low spatial resolution. Purpose To investigate the feasibility of high-resolution through-plane MR flow measurements (2D-PC) in the cerebral aqueduct at high field strength (7T). Material and Methods 2D-PC measurements in the aqueduct were performed in nine healthy individuals at 7T. Measurement accuracy was determined using a phantom. Aqueduct area, mean velocity, maximum velocity, minimum velocity, net flow, and mean flow were determined using in-plane resolutions 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2. Feasibility criteria were defined based on scan time and spatial and temporal resolution. Results Phantom validation of 2D-PC MR showed good accuracy. In vivo, stroke volume was -8.2 ± 4.4, -4.7 ± 2.8, -6.0 ± 3.8, and -3.7 ± 2.1 µL for 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2, respectively. The scan with 0.3 × 0.3 mm2 resolution fulfilled the feasibility criteria for a wide range of heart rates and aqueduct diameters. Conclusion 7T MR enables non-invasive quantification of CSF flow and velocity in the cerebral aqueduct with high spatial resolution.


Assuntos
Aqueduto do Mesencéfalo/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Aqueduto do Mesencéfalo/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes
7.
Nat Commun ; 7: 10329, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754915

RESUMO

Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Aqueduto do Mesencéfalo/metabolismo , Epêndima/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hidrocefalia/metabolismo , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Caderinas/metabolismo , Proteínas de Ciclo Celular , Aqueduto do Mesencéfalo/patologia , Epêndima/patologia , Doenças Fetais , Hidrocefalia/induzido quimicamente , Hidrocefalia/patologia , Imuno-Histoquímica , Lisofosfolipídeos/toxicidade , Camundongos , Fosfoproteínas/metabolismo , Proteínas de Sinalização YAP
8.
J Chem Neuroanat ; 68: 1-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164497

RESUMO

Histidine decarboxylase (HDC) catalyzes the biosynthesis of histamine from L-histidine and is expressed throughout the mammalian nervous system by histaminergic neurons. Histaminergic neurons arise in the posterior mesencephalon during the early embryonic period and gradually develop into two histaminergic substreams around the lateral area of the posterior hypothalamus and the more anterior peri-cerebral aqueduct area before finally forming an adult-like pattern comprising five neuronal clusters, E1, E2, E3, E4, and E5, at the postnatal stage. This distribution of histaminergic neuronal clusters in the rat hypothalamus appears to be a consequence of neuronal development and reflects the functional differentiation within each neuronal cluster. However, the close linkage between the locations of histaminergic neuronal clusters and their physiological functions has yet to be fully elucidated because of the sparse information regarding the location and orientation of each histaminergic neuronal clusters in the hypothalamus of rats and mice. To clarify the distribution of the five-histaminergic neuronal clusters more clearly, we performed an immunohistochemical study using the anti-HDC antibody on serial sections of the rat hypothalamus according to the brain maps of rat and mouse. Our results confirmed that the HDC-immunoreactive (HDCi) neuronal clusters in the hypothalamus of rats and mice are observed in the ventrolateral part of the most posterior hypothalamus (E1), ventrolateral part of the posterior hypothalamus (E2), ventromedial part from the medial to the posterior hypothalamus (E3), periventricular part from the anterior to the medial hypothalamus (E4), and diffusely extended part of the more dorsal and almost entire hypothalamus (E5). The stereological estimation of the total number of HDCi neurons of each clusters revealed the larger amount of the rat than the mouse. The characterization of histaminergic neuronal clusters in the hypothalamus of rats and mice may provide useful information for further investigations.


Assuntos
Histamina/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Algoritmos , Animais , Mapeamento Encefálico , Aqueduto do Mesencéfalo/metabolismo , Histidina Descarboxilase/metabolismo , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/classificação , Ratos , Ratos Wistar , Terminologia como Assunto
9.
Neurosci Lett ; 597: 71-6, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25929186

RESUMO

Mammalian SWI/SNF-like BAF chromatin remodeling complexes are essential for many aspects of neural development. Mutations in the genes encoding the core subunit Brg1/SmarcA4 or other complex components cause neurodevelopmental diseases and are associated with autism. Congenital hydrocephalus is a serious brain disorder often experienced by these patients. We report a role of Brg1 in the pathogenesis of hydrocephalus disorder. We discovered an unexpected early activity of mouse Camk2a-Cre transgene, which mediates Brg1 deletion in a subset of forebrain neurons beginning in the late embryonic stage. Brg1 deletion in these neurons led to severe congenital hydrocephalus with enlargement of the lateral ventricles and attenuation of the cerebral cortex. The Brg1-deficient mice had significantly smaller subcommissural organs and narrower Sylvian aqueducts than mice that express normal levels of Brg1. Effects were non-cell autonomous and may be responsible for the development of the congenital hydrocephalus phenotype. Our study provides evidence indicating that abnormalities in Brg1 function result in defects associated with neurodevelopmental disorders and autism.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , DNA Helicases/genética , Hidrocefalia/congênito , Integrases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/metabolismo , Constrição Patológica , DNA Helicases/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Prosencéfalo/anormalidades , Prosencéfalo/metabolismo , Órgão Subcomissural/anormalidades , Órgão Subcomissural/metabolismo , Fatores de Transcrição/metabolismo
10.
Am J Physiol Endocrinol Metab ; 306(4): E414-23, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347057

RESUMO

Previously, we reported that low-dose leptin infusions into the fourth ventricle produced a small but significant increase in body fat. These data contrast with reports that injections of higher doses of leptin into the fourth ventricle inhibit food intake and weight gain. In this study, we tested whether exogenous leptin in the fourth ventricle opposed or contributed to weight loss caused by third ventricle leptin infusion by blocking diffusion of CSF from the third to the fourth ventricle. Male Sprague-Dawley rats received third ventricle infusions of PBS or 0.3 µg leptin/24 h from miniosmotic pumps. After 4 days, rats received a 3-µl cerebral aqueduct injection of saline or of thermogelling nanoparticles (hydrogel) that solidified at body temperature. Third ventricle leptin infusion inhibited food intake and caused weight loss. Blocking the aqueduct exaggerated the effect of leptin on food intake and weight loss but had no effect on the weight of PBS-infused rats. Leptin reduced both body fat and lean body mass but did not change energy expenditure. Blocking the aqueduct decreased expenditure of rats infused with PBS or leptin. Infusion of leptin into the third ventricle increased phosphorylated STAT3 in the VMHDM of the hypothalamus and the medial NTS in the hindbrain. Blocking the aqueduct did not change hypothalamic p-STAT3 but decreased p-STAT3 in the medial NTS. These results support previous observations that low-level activation of hindbrain leptin receptors has the potential to blunt the catabolic effects of leptin in the third ventricle.


Assuntos
Peso Corporal/efeitos dos fármacos , Aqueduto do Mesencéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Aqueduto do Mesencéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Quarto Ventrículo/efeitos dos fármacos , Quarto Ventrículo/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Hipotálamo/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Terceiro Ventrículo/efeitos dos fármacos , Terceiro Ventrículo/metabolismo
11.
PLoS One ; 8(11): e80356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236178

RESUMO

Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-ß-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.


Assuntos
Junções Aderentes/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Deleção de Genes , Hidrocefalia/genética , Hidrocefalia/patologia , Proteínas dos Microfilamentos/genética , Animais , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Modelos Animais de Doenças , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Terceiro Ventrículo/metabolismo , Terceiro Ventrículo/patologia
12.
Cell Tissue Res ; 352(3): 707-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640132

RESUMO

The present investigation was designed to clarify the role of the subcommissural organ (SCO) in the pathogenesis of hydrocephalus occurring in the HTx rat. The brains of non-affected and hydrocephalic HTx rats from embryonic day 15 (E15) to postnatal day 10 (PN10) were processed for electron microscopy, lectin binding and immunocytochemistry by using a series of antibodies. Cerebrospinal fluid (CSF) samples of non-affected and hydrocephalic HTx rats were collected at PN1, PN7 and PN30 and analysed by one- and two-dimensional electrophoresis, immunoblotting and nanoLC-ESI-MS/MS. A distinct malformation of the SCO is present as early as E15. Since stenosis of the Sylvius aqueduct (SA) occurs at E18 and dilation of the lateral ventricles starts at E19, the malformation of the SCO clearly precedes the onset of hydrocephalus. In the affected rats, the cephalic and caudal thirds of the SCO showed high secretory activity with all methods used, whereas the middle third showed no signs of secretion. At E18, the middle non-secretory third of the SCO progressively fused with the ventral wall of SA, resulting in marked aqueduct stenosis and severe hydrocephalus. The abnormal development of the SCO resulted in the permanent absence of Reissner's fibre (RF) and led to changes in the protein composition of the CSF. Since the SCO is the source of a large mass of sialilated glycoproteins that form the RF and of those that remain CSF-soluble, we hypothesize that the absence of this large mass of negatively charged molecules from the SA domain results in SA stenosis and impairs the bulk flow of CSF through the aqueduct.


Assuntos
Hidrocefalia/etiologia , Hidrocefalia/patologia , Órgão Subcomissural/patologia , Sequência de Aminoácidos , Animais , Diferenciação Celular , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Aqueduto do Mesencéfalo/ultraestrutura , Constrição Patológica , Embrião de Mamíferos/patologia , Feto/patologia , Hidrocefalia/líquido cefalorraquidiano , Dados de Sequência Molecular , Pré-Albumina/líquido cefalorraquidiano , Pré-Albumina/química , Ratos , Órgão Subcomissural/metabolismo , Órgão Subcomissural/ultraestrutura
13.
Neurogenetics ; 13(1): 49-59, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22222883

RESUMO

Mutations in the gene encoding the neural cell adhesion molecule L1CAM cause several neurological disorders collectively referred to as L1 syndrome. We report here a family case of X-linked hydrocephalus in which an obligate female carrier has two exonic L1CAM missense mutations in trans substituting amino acids in the first (p.W635C) or second (p.V768I) fibronectin-type III domains. We performed various biochemical and cell biological in vitro assays to evaluate the pathogenicity of these variants. Mutant L1-W635C protein accumulates in the endoplasmic reticulum (ER), is not transported into axons, and fails to promote L1CAM-mediated cell-cell adhesion as well as neurite growth. Immunoprecipitation experiments show that L1-W635C associates with the molecular ER chaperone calnexin and is modified by poly-ubiquitination. The mutant L1-V768I protein localizes at the cell surface, is not retained in the ER, and promotes neurite growth similar to wild-type L1CAM. However, the p.V768I mutation impairs L1CAM-mediated cell-cell adhesion albeit less severe than L1-W635C. These data indicate that p.W635C is a novel loss-of-function L1 syndrome mutation. The p.V768I mutation may represent a non-pathogenic variant or a variant associated with low penetrance. The poly-ubiquitination of L1-W635C and its association with the ER chaperone calnexin provide further insights into the molecular mechanisms underlying defective cell surface trafficking of L1CAM in L1 syndrome.


Assuntos
Éxons , Doenças Genéticas Ligadas ao Cromossomo X/genética , Variação Genética , Hidrocefalia/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Adulto , Linhagem Celular , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Análise Mutacional de DNA , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/citologia , Neurônios/fisiologia , Linhagem
14.
Jpn J Radiol ; 29(2): 110-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21359936

RESUMO

PURPOSE: Measuring the cerebrospinal fluid (CSF) production rate is important for understanding the physiology related to normal conditions and neurological disorders. Triggered phase-contrast magnetic resonance imaging (MRI) has been used to measure CSF production rate, but the use of nontriggered phase-contrast MRI has not been reported. The purposes of this study were to assess the feasibility of using nontriggered phase-contrast MRI to measure CSF flow and to determine whether CSF production exhibits circadian rhythm. MATERIALS AND METHODS: The feasibility of phase-contrast MRI was assessed with a phantom simulated human cerebral aqueduct. CSF flow through the cerebral aqueduct was measured with nontriggered phase-contrast MRI four times during 1 day in 10 normal volunteers. RESULTS: In the phantom study, linear regression analysis gave the following measured values (ml/h): 0.80 × (value of steady flow) - 10.0 for triggered phase-contrast MRI and 1.27 × (value of steady flow) - 12.2 for nontriggered phase-contrast MRI. One-factor analysis of variance showed no significant effect of the time of the measurements (P = 0.47). The supratentorial CSF production rate was 510 ± 549 ml/day (mean ± SD). CONCLUSION: Nontriggered phase-contrast MRI provided good estimates of the flow rate in the phantom study. We observed no circadian rhythm in CSF production.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Ritmo Circadiano , Imageamento por Ressonância Magnética/métodos , Adulto , Análise de Variância , Aqueduto do Mesencéfalo/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Modelos Lineares , Masculino , Imagens de Fantasmas
15.
Bull Exp Biol Med ; 151(6): 769-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22485228

RESUMO

Liquor circulation is a directed flow of the liquor from sites of its secretion to sites of resorption. This slow flow is modulated by pulsation caused by heart work. Phase-contrast magnetic resonance imaging is a method for noninvasive measurements of the linear velocity of these pulses in the cerebral aqueduct. A mathematical model reproducing pulsed flow of the liquor in the cerebral aqueduct is proposed and the procedure of evaluation of these parameters is presented. The pliability liquor system can be calculated from the values of liquor flow linear velocity in the cerebral aqueduct, measured by noninvasive method.


Assuntos
Aqueduto do Mesencéfalo/metabolismo , Modelos Teóricos , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética
16.
Mol Biol Cell ; 20(24): 5074-85, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828736

RESUMO

The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase-activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus.


Assuntos
Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Miosinas/metabolismo , Administração Oral , Amidas/farmacologia , Animais , Animais Recém-Nascidos , Células CACO-2 , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Aqueduto do Mesencéfalo/efeitos dos fármacos , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Constrição Patológica/patologia , Epêndima/efeitos dos fármacos , Epêndima/metabolismo , Epêndima/patologia , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Camundongos , Camundongos Knockout , Miosinas/deficiência , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
17.
Stress ; 12(2): 115-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18850494

RESUMO

Period 2 (Per2) is an important clock gene involved in the regulation of the major circadian clock in the mammalian central nervous system, the suprachiasmatic nucleus. In addition, Per2 is expressed in many other stress-sensitive brain structures. We have previously showed that the non-preganglionic Edinger-Westphal nucleus (npEW) is the main site of the corticotropin-releasing factor peptide family member urocortin 1 (Ucn1) and that this peptide undergoes conspicuous expression changes in response to various stressors. Here, we hypothesized that in the rat npEW both Per2 and Ucn1 would be produced in a diurnal, rhythmical fashion. This hypothesis was tested by following this expected rhythm on two days in rats killed at four time points each day (Zeitgeber times 0, 6, 12, and 18). We showed the co-existence of Per2 and Ucn1 in the npEW with double-label immunofluorescence and demonstrated with quantitative RT-PCR and semi-quantitative immunocytochemistry diurnal rhythms in Per2 mRNA expression and Per2 protein content, each on a single different day, with a minimum at lights-off and a maximum at lights-on. We furthermore revealed a diurnal rhythm in the number of Ucn1-immunopositive neurones and in their Ucn1 peptide content, with a minimum at night and at the beginning of the light period and a peak at lights-off, while the Ucn1 mRNA content paralleled the Per2 mRNA rhythm. The rhythms were accompanied by a diurnal rhythm in plasma corticosterone concentration. Our results are in line with the hypothesis that both Per2 and Ucn1 in the rat npEW are produced in a diurnal fashion, a phenomenon that may be relevant for the regulation of the diurnal rhythm in the stress response.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Aqueduto do Mesencéfalo/metabolismo , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/biossíntese , Urocortinas/biossíntese , Animais , Corticosterona/sangue , Imuno-Histoquímica , Masculino , Proteínas Circadianas Period , Ratos , Ratos Wistar
18.
Brain Res ; 1210: 163-78, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18410908

RESUMO

Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized within the postero-lateral hypothalamus and zona incerta. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes such as energy homeostasis and sleep. In the present report, we examined the distribution of MCH immunoreactivity in the brainstem of the cat. In addition to MCH+ axons, we found MCH-immunoreactive cells that have not been previously described either in the midbrain raphe nuclei or in the periaqueductal and periventricular areas. These MCH+ cells constituted: 1. ependymal cells that lined the fourth ventricle and aqueduct, 2. ependymal cells with long basal processes that projected deeply into the subventricular (subaqueductal) parenchyma, and, 3. cells in subventricular regions and the midbrain raphe nuclei. The MCH+ cells in the midbrain raphe nuclei were closely related to neuronal processes of serotonergic neurons. Utilizing Neu-N and GFAP immunohistochemistry we determined that the preceding MCH+ cells were neither neurons nor astrocytes. However, we found that vimentin, an intermediate-filament protein that is used as a marker for tanycytes, was specifically co-localized with MCH in these cells. We conclude that MCH is present in tanycytes whose processes innervate the midbrain raphe nuclei and adjacent subependymal regions. Because tanycytes are specialized cells that transport substances from the cerebrospinal fluid (CSF) to neural parenchyma, we suggest that MCH is absorbed from the CSF by tanycytes and subsequently liberate to act upon neurons of brainstem nuclei.


Assuntos
Tronco Encefálico/metabolismo , Epêndima/metabolismo , Quarto Ventrículo/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Neuroglia/metabolismo , Hormônios Hipofisários/metabolismo , Núcleos da Rafe/metabolismo , Animais , Mapeamento Encefálico , Tronco Encefálico/citologia , Gatos , Aqueduto do Mesencéfalo/citologia , Aqueduto do Mesencéfalo/metabolismo , Líquido Cefalorraquidiano/fisiologia , Proteínas de Ligação a DNA , Epêndima/citologia , Quarto Ventrículo/citologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Proteínas Nucleares/metabolismo , Núcleos da Rafe/citologia , Vimentina/metabolismo
19.
Acta Histochem ; 110(2): 172-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17961638

RESUMO

The cytoskeleton of cerebral microvascular endothelial cells is a critical determinant of blood-brain barrier (BBB) function. Barrier integrity appears to be particularly sensitive to the phosphorylation state of specific residues within myosin regulatory light chain (RLC), one of two accessory light chains of the myosin II motor complex. Phosphorylation of myosin RLC by myosin light chain kinase (MLCK) has been implicated in BBB dysfunction associated with alcohol abuse and hypoxia, whereas dephosphorylation may enhance BBB integrity following exposure to lipid-lowering statin drugs. Using immunohistochemistry we provide evidence of widespread myosin II RLC distribution throughout the cerebral vasculature of the mouse. Light microscopy revealed immunolocalization of myosin II RLC protein in the endothelium of brain capillaries, the endothelial cell layer of arterioles and in association with venules. Immunolabeling of myosin RLC in non-muscle endothelial cells could be distinguished from myosin RLC immunoreactivity associated with the smooth muscle layer of the tunica media in larger muscular arterioles. These findings support an emerging role for myosin II RLC as a component of the actomyosin cytoskeleton of cerebral endothelial cells with the potential to contribute to the selective vulnerability of the brain in vivo.


Assuntos
Encéfalo/irrigação sanguínea , Cadeias Leves de Miosina/metabolismo , Miosina Tipo II/metabolismo , Animais , Aqueduto do Mesencéfalo/citologia , Aqueduto do Mesencéfalo/metabolismo , Epêndima/citologia , Epêndima/metabolismo , Soros Imunes , Imuno-Histoquímica , Masculino , Camundongos , Microcirculação/citologia , Cadeias Leves de Miosina/análise , Miosina Tipo II/análise
20.
J Neuropathol Exp Neurol ; 64(7): 595-604, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16042311

RESUMO

In mutant rodents, ependymal denudation occurs early in fetal life, preceding the onset of a communicating hydrocephalus, and is a key event in the etiology of this disease. The present investigation was designed to obtain evidence whether or not ependymal denudation occurs in 16- to 40-week-old human fetuses developing a communicating hydrocephalus (n = 8) as compared to fetuses of similar ages with no neuropathologic alterations (n = 15). Sections through the walls of the cerebral aqueduct and lateral ventricles were processed for lectin binding and immunocytochemistry using antibodies against ependyma, astroglia, neuroblasts, and macrophages markers. Anticaveolin was used as a functional marker of the fetal ependyma. The structural and functional molecular markers are differentially expressed throughout the differentiation of the human fetal ependyma. Denudation of the ependyma of the aqueduct and lateral ventricles occurred in all fetuses developing a communicating hydrocephalus, including the youngest ones studied. The denuded surface area increased in parallel with the fetus age. The possibility is advanced that in many or most cases of human fetal hydrocephalus there is a common defect at the ependymal cell lineage leading to ependymal detachment. Evidence was obtained that in hydrocephalic human fetuses a process to repair the denuded areas takes place during the fetal life. In hydrocephalic fetuses, detachment of the ependyma of the lateral ventricles resulted in the (i) loss of the germinal ependymal zone, (ii) disorganization of the subventricular zone and, (iii) abnormal migration of neuroblasts into the ventricular cavity. Thus, detachment of the ependymal layer in hydrocephalic fetuses would not only be associated with the pathogenesis of hydrocephalus but also to abnormal neurogenesis.


Assuntos
Aqueduto do Mesencéfalo/patologia , Epêndima/patologia , Hidrocefalia/patologia , Ventrículos Laterais/patologia , Aqueduto do Mesencéfalo/metabolismo , Epêndima/embriologia , Epêndima/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Feto , Humanos , Hidrocefalia/metabolismo , Imuno-Histoquímica , Ventrículos Laterais/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...