Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Dysmorphol ; 33(1): 43-49, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865865

RESUMO

Argininosuccinate lyase (ASL) deficiency is an autosomal recessive disorder of the urea cycle with a diverse spectrum of clinical presentation that is detectable in newborn screening. We report an 8-year-old girl with ASL deficiency who was detected through newborn screening and was confirmed using biochemical and functional assay. She is compound heterozygous for a likely pathogenic variant NM_000048.4(ASL):c.283C>T (p.Arg95Cys) and a likely benign variant NM_000048.4(ASL): c.1319T>C (p.Leu440Pro). Functional characterisation of the likely benign genetic variant in ASL was performed. Genomic sequencing was performed on the index patient presenting with non-specific symptoms of poor feeding and lethargy and shown to have increased serum and urine argininosuccinic acid. Functional assay using HEK293T cell model was performed. ASL enzymatic activity was reduced for Leu440Pro. This study highlights the role of functional testing of a variant that may appear benign in a patient with a phenotype consistent with ASL deficiency, and reclassifies NM_000048.4(ASL): c.1319T>C (p.Leu440Pro) variant as likely pathogenic.


Assuntos
Acidúria Argininossuccínica , Recém-Nascido , Feminino , Humanos , Criança , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Argininossuccinato Liase/genética , Argininossuccinato Liase/química , Argininossuccinato Liase/metabolismo , Triagem Neonatal , Células HEK293 , Sequência de Bases
2.
Nitric Oxide ; 108: 12-19, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338599

RESUMO

Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.


Assuntos
Arginina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Argininossuccinato Liase/química , Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/química , Argininossuccinato Sintase/metabolismo , Bovinos , Células Endoteliais , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Mol Genet Genomic Med ; 8(7): e1301, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410394

RESUMO

BACKGROUND: The urea cycle plays a key role in preventing the accumulation of toxic nitrogenous waste products, including two essential enzymes: ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL). Ornithine transcarbamylase deficiency (OTCD) results from mutations in the OTC. Meanwhile, argininosuccinate lyase deficiency (ASLD) is caused by mutations in the ASL. METHODS: Blood tandem mass spectrometric analysis and urea organic acidemia screening were performed on five Chinese cases, including three OTCD and two ASLD patients. Next-generation sequencing was then used to make a definite diagnosis, and the related variants were validated by Sanger sequencing. RESULTS: The five patients exhibited severe clinical symptoms, with abnormal biochemical analysis and amino acids profile. Genetic analysis revealed two variants [c.77G>A (p.Arg26Gln); c.116G>T (p.Gly39Val)] in the OTC, as well as two variants [c.1311T>G (p.Tyr437*); c.961T>A (p.Tyr321Asn)] in the ASL. Conservation analysis showed that the amino acids of the two novel mutations were highly conserved in different species and were predicted to be possibly damaging with several in silico prediction programs. 3D-modeling analysis indicated that the two novel missense variants might result in modest distortions of the OTC and ASL protein structures, respectively. CONCLUSIONS: Two novel variants expand the mutational spectrums of the OTC and ASL. All the results may contribute to a better understanding of the clinical course and genetic characteristics of patients with urea cycle disorders.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ornitina Carbamoiltransferase/genética , Argininossuccinato Liase/química , Acidúria Argininossuccínica/patologia , Feminino , Humanos , Lactente , Masculino , Simulação de Dinâmica Molecular , Ornitina Carbamoiltransferase/química , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Linhagem , Domínios Proteicos
4.
Genomics ; 112(3): 2247-2260, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31884157

RESUMO

The air-breathing magur catfish (Clarias magur) is a potential ureogenic teleost because of its functional ornithine-urea cycle (OUC), unlike typical freshwater teleosts. The ability to convert ammonia waste to urea was a significant step towards land-based life forms from aquatic predecessors. Here we investigated the molecular characterization of some OUC genes and the molecular basis of stimulation of ureogenesis via the OUC in magur catfish. The deduced amino acid sequences from the complete cDNA coding sequences of ornithine transcarbamyolase, argininosuccinate synthase, and argininosuccinate lyase indicated that phylogenetically magur catfish is very close to other ureogenic catfishes. Ammonia exposure led to a significant induction of major OUC genes and the gene products in hepatic and in certain non-hepatic tissues of magur catfish. Hence, it is reasonable to assume that the induction of ureogenesis in magur catfish under hyper-ammonia stress is mediated through the activation of OUC genes as an adaptational strategy.


Assuntos
Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/metabolismo , Peixes-Gato/metabolismo , Proteínas de Peixes/metabolismo , Ornitina Carbamoiltransferase/metabolismo , Ornitina/metabolismo , Ureia/metabolismo , Amônia/toxicidade , Animais , Argininossuccinato Liase/biossíntese , Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Argininossuccinato Sintase/biossíntese , Argininossuccinato Sintase/química , Argininossuccinato Sintase/genética , Peixes-Gato/genética , Proteínas de Peixes/biossíntese , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ornitina Carbamoiltransferase/biossíntese , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Filogenia , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Distribuição Tecidual
5.
Biochem Biophys Res Commun ; 510(1): 116-121, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30665717

RESUMO

Argininosuccinate lyase (ASL) participates in arginine synthesis through catalysing a reversible reaction in which argininosuccinate (AS) converts into arginine and fumarate. ASL from Mycobacterium tuberculosis is essential for its growth. In this work, the crystal structure of the apo form of MtbASL was determined and reveals a tetrameric structure that is essential for its activity since the active sites are formed by residues from three different monomers. Subsequently, we determined the crystal structure of MtbASL-sulfate complex, and the ligand mimics the negatively charged intermediate. The complex structure and mutagenesis studies indicate that residues S282 and H161 might act as a catalytic dyad. A major conformational change in the MtbASL-SO4 complex structure could be observed upon sulfate binding, and this movement facilitates the interaction between substrate and the residues involved in catalysis. A different conformational change in the C-terminal domain could be observed in the MtbASL-SO4 complex compared with that in other homologues. This difference may be responsible for the lower activity of MtbASL, which is related to the slow growth rate of M. tuberculosis. The C-terminal domain is a potential allosteric site upon inhibitor binding. The various conformational changes and the diversity of the sequence of the potential allosteric site across the homologues might provide clues for designing selective inhibitors against M. tuberculosis.


Assuntos
Argininossuccinato Liase/química , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/enzimologia , Sítio Alostérico , Arginina/biossíntese , Argininossuccinato Liase/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Sulfatos/metabolismo , Sulfatos/farmacologia
6.
IUBMB Life ; 71(5): 643-652, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30615268

RESUMO

Argininosuccinate lyase catalyses the reversible breakdown of argininosuccinate into arginine and fumarate and is known to form tetramers in its quaternary association. The absence of structures involving competent enzymes bound to substrate/products came in the way of the precise elucidation of the catalytic mechanism of this family of proteins. Crystal structures of the enzyme from Mycobacterium tuberculosis in an unliganded form and its complex with the substrate/products have now been determined at 2.2 and 2.7 Å, respectively. The refinement of the structure of the complex was bedevilled by the presence of a lattice translocation defect. The two tetramers in the apo-crystals and the one in the crystals of the liganded protein, have the same structure except for the movements associated with enzyme action. Each molecule consists of an N-domain, an M-domain, and a C-domain. The molecule consists of four binding sites, each made up of peptide stretches from three subunits. Three binding sites appear to be occupied by the ligand in the transition state, while the products occupy the fourth site. The structure exhibits the movement of a loop in the M-domain and parts of the C-domain. This is the first instance when the appropriate movements are observed in a complex with bound substrate/product. The detailed picture of the binding site, active site residues and the movements associated with catalysis thus obtained, enabled a revisit of the mechanism of action of the enzyme. © 2019 IUBMB Life, 71(5):643-652, 2019.


Assuntos
Argininossuccinato Liase/química , Argininossuccinato Liase/metabolismo , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato
7.
IUBMB Life ; 69(11): 896-907, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29044950

RESUMO

Arginine biosynthesis pathway is crucial to the survival and pathogenesis of Mycobacterium tuberculosis (Mtb). Arginine is a critical amino acid that contributes to the inflection of cellular immune responses during pathogenesis. Argininosuccinate lyase from Mtb (MtArgH), the last enzyme in the pathway, catalyzes the production of arginine from argininosuccinic acid. MtArgH is an essential enzyme for the growth and survival of M. tuberculosis. We biochemically characterized MtArgH and deciphered the role of a previously unexplored cysteine (Cys441 ) residue at the C-terminal region of the protein. Chemical modification of Cys441 completely abrogated the enzymatic activity suggesting its involvement in the catalytic mechanism. Replacement of Cys441 to alanine showed a striking decrease in the enzymatic activity, while retaining the overall secondary to quaternary structure of the protein, hence corroborating the involvement of Cys441 in the process of catalysis. Interestingly, replacement of Cys441 to serine, showed significant increase in activity, as compared to the wild-type MtArgH. Inactivity of C441 A and elevated activity of its conservative mutant (C441 S) confirmed the participation of Cys441 in the MtArgH activity. We also, observed that C441 S mutant has higher thermal stability and maintains significant activity at high temperatures. This is in concordance with our observation that Cys441 in Mtb is replaced by a serine in the ArgH from thermophilic microorganisms. Furthermore, we also propose a potential feedback mechanism, wherein the Cys441 is covalently modified to S-(2-succinyl) cysteine (succination) by one of the products, fumarate, thereby inactivating MtArgH. These insights into the mechanism of MtArgH activity unravel novel regulations of arginine biosynthetic pathway in Mtb. © 2017 IUBMB Life, 69(11):896-907, 2017.


Assuntos
Argininossuccinato Liase/química , Proteínas de Bactérias/química , Cisteína/química , Mycobacterium tuberculosis/enzimologia , Serina/química , Sequência de Aminoácidos , Arginina/metabolismo , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Ácido Argininossuccínico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cisteína/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Mol Diagn Ther ; 20(2): 125-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745957

RESUMO

INTRODUCTION: Cysteamine is used to treat cystinosis via the modification of cysteine residues substituting arginine in mutant proteins. OBJECTIVES: We investigated the effect of cysteamine on mutant argininosuccinate lyase (ASL), the second most common defect in the urea cycle. METHODS: In an established mammalian expression system, 293T cell lysates were produced after transfection with all known cysteine for arginine mutations in the ASL gene (p.Arg94Cys, p.Arg95Cys, p.Arg168Cys, p.Arg379Cys, and p.Arg385Cys), allowing testing of the effect of cysteamine over 48 h in the culture medium as well as for 1 h immediately prior to the enzyme assay. RESULTS: Cysteamine at low concentrations showed no effect on 293T cell viability, ASL protein expression, or ASL activity when applied during cell culture. However, incubation of transfected cells with 0.05 mM cysteamine immediately before the enzyme assay resulted in increased ASL activity of p.Arg94Cys, p.Arg379Cys, and p.Arg385Cys by 64, 20, and 197 %, respectively, and this result was significant (p < 0.01). Cell lysates carrying p.Arg385Cys and treated with cysteamine recover enzyme activity that is similar to the untreated designed mutation p.Arg385Lys, providing circumstantial evidence for the assumed cysteamine-induced change of a cysteine to a lysine analogue. CONCLUSION: Since 12 % of all known genotypes in ASL deficiency are affected by a cysteine for arginine mutation, we conclude that the potential of cysteamine or of related substances as remedy for this disease should be investigated further.


Assuntos
Substituição de Aminoácidos/efeitos dos fármacos , Arginina/metabolismo , Argininossuccinato Liase/genética , Cisteamina/farmacologia , Cisteína/metabolismo , Argininossuccinato Liase/química , Argininossuccinato Liase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular
9.
J Inherit Metab Dis ; 38(5): 815-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25778938

RESUMO

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3% of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16% of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30% of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Substituição de Aminoácidos , Argininossuccinato Liase/química , Acidúria Argininossuccínica/enzimologia , Estabilidade Enzimática/genética , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estabilidade de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Temperatura , Transfecção , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética
10.
Hum Mutat ; 35(1): 27-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166829

RESUMO

Argininosuccinate lyase deficiency (ASLD) is caused by a defect of the urea cycle enzyme argininosuccinate lyase (ASL) encoded by the ASL gene. Patients often present early after birth with hyperammonemia but can also manifest outside the neonatal period mainly triggered by excessive protein catabolism. Clinical courses comprise asymptomatic individuals who only excrete the biochemical marker, argininosuccinic acid, in urine, and patients who succumb to their first hyperammonemic decompensation. Some patients without any hyperammonemia develop severe neurological disease. Here, we are providing an update on the molecular basis of ASLD by collecting all published (n = 67) as well as novel mutations (n = 67) of the ASL gene. We compile data on all 160 different genotypes ever identified in 223 ASLD patients, including clinical courses whenever available. Finally, we are presenting structural considerations focusing on the relevance of mutations for ASL homotetramer formation. ASLD can be considered as a panethnic disease with only single founder mutations identified in the Finnish (c.299T>C, p.Ile100Thr) and Arab (c.1060C>T, p.Gln354*) population. Most mutations are private with only few genotypes recurring in unrelated patients. The majority of mutations are missense changes including some with more frequent occurrence such as p.Arg12Gln, p.Ile100Thr, p.Val178Met, p.Arg186Trp, p.Glu189Gly, p.Gln286Arg, and p.Arg385Cys.


Assuntos
Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Variação Genética , Acidúria Argininossuccínica/etnologia , Sítios de Ligação , Códon sem Sentido , Genótipo , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
11.
Artigo em Inglês | MEDLINE | ID: mdl-24316845

RESUMO

The last enzyme in the arginine-biosynthesis pathway, argininosuccinate lyase, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized, and preliminary X-ray studies have been carried out on the crystals. The His-tagged tetrameric enzyme with a subunit molecular weight of 50.9 kDa crystallized with two tetramers in the asymmetric unit of the orthorhombic unit cell, space group P2(1)2(1)2(1). Molecular-replacement calculations and self-rotation calculations confirmed the space group and the tetrameric nature of the molecule.


Assuntos
Argininossuccinato Liase/química , Proteínas de Bactérias/química , Mycobacterium tuberculosis/química , Subunidades Proteicas/química , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/química , Histidina/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Biol Chem ; 288(48): 34599-611, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24136197

RESUMO

Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.


Assuntos
Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Adulto , Argininossuccinato Liase/metabolismo , Acidúria Argininossuccínica/enzimologia , Acidúria Argininossuccínica/patologia , Criança , Éxons , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Humanos , Masculino , Mutação , Fenótipo , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética
13.
Biochemistry ; 51(21): 4237-43, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22551392

RESUMO

Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.


Assuntos
Aspartato Amônia-Liase/química , Aspartato Amônia-Liase/metabolismo , Fumarato Hidratase/química , Fumarato Hidratase/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Aspartato Amônia-Liase/genética , Catálise , Domínio Catalítico , Sequência Conservada , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fumarato Hidratase/genética , Humanos , Liases Intramoleculares/química , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , delta-Cristalinas/química , delta-Cristalinas/genética , delta-Cristalinas/metabolismo
14.
Biochimie ; 94(2): 566-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21963434

RESUMO

Argininosuccinate lyase (ASL) catalyzes the conversion of argininosuccinate into arginine and fumarate, a key step in the biosynthesis of urea and arginine. ASL is a tetrameric enzyme but it dissociates into inactive dimers under low temperature conditions. This study investigates the inactivation process under low temperature conditions. Inactivation was caused by dissociation of tetrameric ASL into dimers, with increased exposure of hydrophobic areas without disturbance of the secondary structure or the microenvironment surrounding the key tryptophan residues. Most activity was retained when temperatures were changed at a rate of >1 °C/min, whilst freezing or thawing more slowly resulted in greater loss of activity. Inactivation was reduced by inclusion of α-crystallin, a structural protein found in ocular lenses and a member of the small heat-shock protein family, by stabilization of the ASL quaternary structure. In addition, α-crystallin was able to restore the function of ASL that had been inactivated by slow freezing and thawing. The effect of α-crystallin was similar to that of bovine serum albumin, suggesting that both proteins exerted their effects by hydrophobic interactions. α-Crystallin therefore acts as a cryo-preservative that protects ASL activity during freezing and thawing.


Assuntos
Argininossuccinato Liase/química , Crioprotetores/química , alfa-Cristalinas/química , Animais , Dicroísmo Circular , Temperatura Baixa , Escherichia coli , Congelamento , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Soroalbumina Bovina/química , Soluções , Espectrometria de Fluorescência , Suínos
15.
Artigo em Inglês | MEDLINE | ID: mdl-21636911

RESUMO

Argininosuccinate lyase (ASL) is an important enzyme in arginine synthesis and the urea cycle, which are highly conserved from bacteria to eukaryotes. The gene encoding Streptococcus mutans ASL (smASL) was amplified and cloned into expression vector pET28a. The recombinant smASL protein was expressed in a soluble form in Escherichia coli strain BL21 (DE3) and purified to homogeneity by two-step column chromatography. Crystals suitable for X-ray analysis were obtained and X-ray diffraction data were collected to a resolution of 2.5 Å. The crystals belonged to space group R3, with unit-cell parameters a = b = 254.5, c = 78.3 Å.


Assuntos
Argininossuccinato Liase/química , Streptococcus mutans/enzimologia , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Biochem Biophys Res Commun ; 385(4): 512-7, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19477162

RESUMO

N(2)-(2-Carboxyethyl)arginine synthase (CEAS), an unusual thiamin diphosphate (ThDP)-dependent enzyme, catalyses the committed step in the biosynthesis of the b-lactamase inhibitor clavulanic acid in Streptomyces clavuligerus. Crystal structures of tetrameric CEAS-ThDP in complex with the substrate analogues 5-guanidinovaleric acid (GVA) and tartrate, and a structure reflecting a possible enol(ate)-ThDP reaction intermediate are described. The structures suggest overlapping binding sites for the substrates D-glyceraldehyde-3-phosphate (D-G3P) and L-arginine, and are consistent with the proposed CEAS mechanism in which D-G3P binds at the active site and reacts to form an alpha,beta-unsaturated intermediate,which subsequently undergoes (1,4)-Michael addition with the alpha-amino group of L-arginine. Additional solution studies are presented which probe the amino acid substrate tolerance of CEAS, providing further insight into the L-arginine binding site. These findings may facilitate the engineering of CEAS towards the synthesis of alternative beta-amino acid products.


Assuntos
Argininossuccinato Liase/química , Argininossuccinato Sintase/química , Complexos Multienzimáticos/química , Streptomyces/enzimologia , Arginina/biossíntese , Arginina/química , Arginina/metabolismo , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Tartaratos/química , Tartaratos/metabolismo , Valeratos/química , Valeratos/metabolismo
17.
Hum Mutat ; 28(7): 694-702, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17326097

RESUMO

Argininosuccinic aciduria (ASAuria) is an inborn error of metabolism caused by mutations in the argininosuccinate lyase (ASL) gene, which leads to the accumulation of argininosuccinic acid (ASA) in body fluids and severe hyperammonemia. A severe neonatal form and a milder late-onset variant are described. We report a novel ASL pseudogene located in the centromeric region of chromosome 7, 14 novel mutations in the ASL gene, and a novel intronic polymorphism found in a cohort of Italian patients. Our approach relied exclusively on genomic DNA analysis. We found seven missense mutations, two nonsense, three small insertions/deletions, and two splicing mutations. Only two patients harbored previously described mutations, and among the novel variants only two were present in more than one kindred. The pathogenicity of the splicing mutations was demonstrated by a functional splicing assay that employed a hybrid minigene. We also performed molecular modeling using the reported three-dimensional structure of ASL to predict the functional consequences of the missense mutations. There was no genotype-phenotype correlation. Patients with neonatal onset display developmental delay and seizures despite adequate metabolic control. Moreover, hepatomegaly, fibrosis, and abnormal liver function tests are common complications in these patients, but not in patients with the late infancy form. We stress the importance of mutation analysis in patients with ASAuria, to confirm the clinical diagnosis, and to perform DNA-based prenatal diagnosis in future pregnancies of these families.


Assuntos
Argininossuccinato Liase/genética , Mutação , Pseudogenes , Sequência de Aminoácidos , Animais , Argininossuccinato Liase/sangue , Argininossuccinato Liase/química , Sequência de Bases , Cromossomos Humanos Par 7 , Primers do DNA , Eritrócitos/enzimologia , Éxons , Genótipo , Humanos , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Homologia de Sequência de Aminoácidos
18.
Biochemistry ; 44(25): 9034-44, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15966727

RESUMO

Delta-crystallin, the major soluble protein component in the avian eye lens, is homologous to argininosuccinate lyase (ASL). Two delta-crystallin isoforms exist in ducks, delta1- and delta2-crystallin, which are 94% identical in amino acid sequence. While duck delta2-crystallin (ddeltac2) has maintained ASL activity, evolution has rendered duck delta1-crystallin (ddeltac1) enzymatically inactive. Previous attempts to regenerate ASL activity in ddeltac1 by mutating the residues in the 20s (residues 22-31) and 70s (residues 74-89) loops to those found in ddeltac2 resulted in a double loop mutant (DLM) which was enzymatically inactive (Tsai, M. et al. (2004) Biochemistry 43, 11672-82). This result suggested that one or more of the remaining five amino acid substitutions in domain 1 of the DLM contributes to the loss of ASL activity in ddeltac1. In the current study, residues Met-9, Val-14, Ala-41, Ile-43, and Glu-115 were targeted for mutagenesis, either alone or in combination, to the residues found in ddeltac2. ASL activity was recovered in the DLM by changing Met-9 to Trp, and this activity is further potentiated in the DLM-M9W mutant when Glu-115 is changed to Asp. The roles of Trp-9 and Asp-115 were further investigated by site-directed mutagenesis in wild-type ddeltac2. Changing the identity of either Trp-9 or Asp-115 in ddeltac2 resulted in a dramatic drop in enzymatic activity. The loss of activity in Trp-9 mutants indicates a preference for an aromatic residue at this position. Truncation mutants of ddeltac2 in which the first 8, 9, or 14 N-terminal residues were removed displayed either decreased or no ASL activity, suggesting residues 1-14 are crucial for enzymatic activity in ddeltac2. Our kinetic studies combined with available structural data suggest that the N-terminal arm in ASL/delta2-crystallin is involved in stabilizing regions of the protein involved in substrate binding and catalysis, and in completely sequestering the substrate from the solvent.


Assuntos
Argininossuccinato Liase/metabolismo , Patos , Engenharia de Proteínas , delta-Cristalinas/química , delta-Cristalinas/metabolismo , Animais , Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Sítios de Ligação , Estabilidade Enzimática , Evolução Molecular , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutação/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , delta-Cristalinas/genética
19.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 11): 1964-70, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502303

RESUMO

Escherichia coli argininosuccinate lyase has been crystallized from a highly concentrated sample of purified recombinant alpha-methylacyl-CoA racemase, in which it occurred as a minor impurity. The structure has been solved using molecular replacement at 2.44 A resolution. The enzyme is tetrameric, but in this crystal form there is a dimer in the asymmetric unit. The tetramer has four active sites; each active site is constructed from loops of three different subunits. One of these catalytic loops, near residues Ser277 and Ser278, was disordered in previous structures of active lyases, but is very well ordered in this structure in one of the subunits owing to the presence of two phosphate ions in the active-site cavity. The positions of these phosphate ions indicate a plausible mode of binding of the succinate moiety of the substrate in the competent catalytic complex.


Assuntos
Argininossuccinato Liase/química , Escherichia coli/enzimologia , Argininossuccinato Liase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Íons/química , Ligantes , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Estrutura Quaternária de Proteína
20.
J Biol Chem ; 279(7): 5685-92, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14623876

RESUMO

The initial step in the biosynthesis of the clinically important beta-lactamase inhibitor clavulanic acid involves condensation of two primary metabolites, D-glyceraldehyde 3-phosphate and L-arginine, to give N2-(2-carboxyethyl)arginine, a beta-amino acid. This unusual N-C bond forming reaction is catalyzed by the thiamin diphosphate (ThP2)-dependent enzyme N2-(2-carboxyethyl)arginine synthase. Here we report the crystal structure of N2-(2-carboxyethyl)arginine synthase, complexed with ThP2 and Mg2+, to 2.35-A resolution. The structure was solved in two space groups, P2(1)2(1)2(1) and P2(1)2(1)2. In both, the enzyme is observed in a tetrameric form, composed of a dimer of two more tightly associated dimers, consistent with both mass spectrometric and gel filtration chromatography studies. Both ThP2 and Mg2+ cofactors are present at the active site, with ThP2 in a "V" conformation as in related enzymes. A sulfate anion is observed in the active site of the enzyme in a location proposed as a binding site for the phosphate group of the d-glyceraldehyde 3-phosphate substrate. The mechanistic implications of the active site arrangement are discussed, including the potential role of the aminopyrimidine ring of the ThP2. The structure will form a basis for future mechanistic and structural studies, as well as engineering aimed at production of alternative beta-amino acids.


Assuntos
Argininossuccinato Liase/química , Argininossuccinato Sintase/química , Ácido Clavulânico/química , Complexos Multienzimáticos/química , Aminoácidos/química , Sítios de Ligação , Cromatografia em Gel , Ácido Clavulânico/biossíntese , Cristalografia por Raios X , Dimerização , Magnésio/química , Espectrometria de Massas , Modelos Químicos , Modelos Moleculares , Streptomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...