Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.026
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931673

RESUMO

Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern.


Assuntos
Arsênio , Colorimetria , Nanoestruturas , Poluentes Químicos da Água , Colorimetria/métodos , Arsênio/análise , Nanoestruturas/química , Humanos , Poluentes Químicos da Água/análise , Água/química
2.
PLoS One ; 19(6): e0298504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913645

RESUMO

INTRODUCTION: Chemical contamination and pollution are an ongoing threat to human health and the environment. The concern over the consequences of chemical exposures at the global level continues to grow. Because resources are constrained, there is a need to prioritize interventions focused on the greatest health impact. Data, especially related to chemical exposures, are rarely available for most substances of concern, and alternate methods to evaluate their impact are needed. STRUCTURED EXPERT JUDGMENT (SEJ) PROCESS: A Structured Expert Judgment (Research Outreach, 2021) process was performed to provide plausible estimates of health impacts for 16 commonly found pollutants: asbestos, arsenic, benzene, chromium, cadmium, dioxins, fluoride, highly hazardous pesticides (HHPs), lead, mercury, polycyclic-aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Per- and Polyfluorinated Substances (PFAs), phthalates, endocrine disrupting chemicals (EDCs), and brominated flame retardants (BRFs). This process, undertaken by sector experts, weighed individual estimations of the probable global health scale health impacts of each pollutant using objective estimates of the expert opinions' statistical accuracy and informativeness. MAIN FINDINGS: The foremost substances, in terms of mean projected annual total deaths, were lead, asbestos, arsenic, and HHPs. Lead surpasses the others by a large margin, with an estimated median value of 1.7 million deaths annually. The three other substances averaged between 136,000 and 274,000 deaths per year. Of the 12 other chemicals evaluated, none reached an estimated annual death count exceeding 100,000. These findings underscore the importance of prioritizing available resources on reducing and remediating the impacts of these key pollutants. RANGE OF HEALTH IMPACTS: Based on the evidence available, experts concluded some of the more notorious chemical pollutants, such as PCBs and dioxin, do not result in high levels of human health impact from a global scale perspective. However, the chemical toxicity of some compounds released in recent decades, such as Endocrine Disrupters and PFAs, cannot be ignored, even if current impacts are limited. Moreover, the impact of some chemicals may be disproportionately large in some geographic areas. Continued research and monitoring are essential; and a preventative approach is needed for chemicals. FUTURE DIRECTIONS: These results, and potential similar analyses of other chemicals, are provided as inputs to ongoing discussions about priority setting for global chemicals and pollution management. Furthermore, we suggest that this SEJ process be repeated periodically as new information becomes available.


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Prova Pericial , Disruptores Endócrinos/toxicidade , Praguicidas/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Arsênio/análise , Arsênio/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluição Ambiental/análise , Amianto/efeitos adversos , Dioxinas/toxicidade , Dioxinas/análise
3.
Environ Geochem Health ; 46(7): 247, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869651

RESUMO

The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mineração , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Arsênio/análise , História do Século XIX , Austrália , História do Século XX
4.
Front Public Health ; 12: 1400921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873303

RESUMO

Rapid urbanization a major factor affecting heavy metal contamination on suburban agricultural soils. In order to assess the dynamic contamination of heavy metals in soil from agricultural land bordering a rapidly urbanizing area and the transfer of human health risks from contaminants in this process, 186 and 293 soil samples from agricultural land in suburban Chengdu were collected in September 2008 and September 2017, respectively. Several indicators, such as the integrated pollution index (PI) and the potential ecological risk index (RI), were employed for analyzing the heavy metal contamination levels, and the APCS-MLR receptor model were applied for analyzing the heavy metal sources. As a result, mean concentrations for five elements did not exceed the national soil pollution risk screening values in the two periods mentioned above. Nemerow's composite contamination index revealed an increase in soil contamination of arable land after 10 years of urbanization, with 3.75 and 1.02% of light and moderate sample plots, respectively, by 2017. The assessment for potential ecological risk indicated an increased level of eco-risk to high for most of the sample plots. Based on the APCS-MLR model, the origin and contribution to the five elements varied considerably between the two periods mentioned above. Among them, soil Pb changed from "industrial source" to "transportation source," soil Cr changed from "natural source" to "transportation source," and As and Hg changed from "industrial source" to "transportation source." As and Hg were associated with agricultural activities in both periods, and Cd was derived from industrial activities in both periods. The study suggests that inhalation has become a major contributor to non-cancer health risks in urbanization, unlike intake routes in previous periods, and that the increase in cancer risk is mainly due to children's consumption of agricultural products with As residues. The change in the main source of As to "transportation" also indicates a decrease in air quality during urbanization and the development of the transportation industry. This study provides a reference for the governments of rapidly urbanizing cities to formulate relevant highway and agricultural policies to safeguard the health of the people based on the current situation.


Assuntos
Agricultura , Arsênio , Cádmio , Monitoramento Ambiental , Chumbo , Mercúrio , Poluentes do Solo , Urbanização , Poluentes do Solo/análise , China , Mercúrio/análise , Humanos , Cádmio/análise , Arsênio/análise , Chumbo/análise , Medição de Risco , Metais Pesados/análise , Cromo/análise , Solo/química
5.
Environ Health ; 23(1): 51, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831396

RESUMO

BACKGROUND: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.


Assuntos
Arsênio , Ácido Fólico , Disrafismo Espinal , Humanos , Ácido Fólico/uso terapêutico , Bangladesh/epidemiologia , Disrafismo Espinal/prevenção & controle , Disrafismo Espinal/epidemiologia , Disrafismo Espinal/induzido quimicamente , Estudos de Casos e Controles , Feminino , Arsênio/análise , Lactente , Masculino , Adulto , Recém-Nascido , Gravidez , Poluentes Químicos da Água/análise , Exposição Materna , Adulto Jovem , Água Potável/química , Água Potável/análise
6.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892501

RESUMO

During lactation, heavy metals and trace elements can be mobilised from the maternal body stores and excreted via human milk. A total of 66 mature human milk samples were collected from lactating women in Latvia between 2016 and 2017 to analyse the content of As, Cd, Pb, Al, Sn, and Ni. Additionally, 50 mature human milk samples were collected between 2022 and 2023 to analyse the content of Cd and Pb. The content of heavy metals and trace elements in human milk was determined using ICP-MS. Only two individual human milk samples contained heavy metals above the method's detection limit-one with an arsenic content of 0.009 mg kg-1 and one with a lead content of 0.047 mg kg-1. The preliminary data show that human milk among lactating women in Latvia contains only insignificant amounts of heavy metals and trace elements. Concern over such content should not be a reason to choose formula feeding over breastfeeding. Nevertheless, heavy metals, trace elements and other pollutants in human milk should be continuously monitored.


Assuntos
Metais Pesados , Leite Humano , Oligoelementos , Humanos , Leite Humano/química , Metais Pesados/análise , Letônia , Feminino , Oligoelementos/análise , Adulto , Lactação , Arsênio/análise , Aleitamento Materno , Adulto Jovem , Poluentes Ambientais/análise
7.
Sci Total Environ ; 943: 173732, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851348

RESUMO

BACKGROUND AND OBJECTIVES: Groundwater contamination poses a significant health challenge in India, particularly impacting children. Despite its importance, limited research has explored the nexus between groundwater quality and child nutrition outcomes. This study addresses this gap, examining the association between groundwater quality and child undernutrition, offering pertinent insights for policymakers. DATA AND METHODS: The study uses data from the fifth round of the National Family Health Survey (NFHS) and the Central Groundwater Board (CGWB) to analyze the association between groundwater quality and child nutritional status. The groundwater quality data were collected by nationwide monitoring stations programmed by CGWB, and the child undernutrition data were obtained from the NFHS-5, 2019-21. The analysis included descriptive and logistic regression model. The study also considers various demographic and socio-economic factors as potential moderators of the relationship between groundwater quality and child undernutrition. FINDINGS: Significant variation in groundwater quality was observed across India, with numerous regions displaying poor performance. Approximately 26.53 % of geographical areas were deemed unfit for consuming groundwater. Environmental factors such as high temperatures, low precipitation, and arid, alluvial, laterite-type soils are linked to poorer groundwater quality. Unfit-for-consumption groundwater quality increased the odds of undernutrition, revealing a 35 %, 38 %, and 11 % higher likelihood of stunting, underweight, and wasting in children, with higher pH, Magnesium, Sulphate, Nitrate, Total Dissolved Solids, and Arsenic, levels associated with increased odds of stunting, underweight, and wasting. Higher temperatures (>25 °C), high elevations (>1000 m), and proximity to cultivated or industrial areas all contribute to heightened risks of child undernutrition. Children consuming groundwater, lacking access to improved toilets, or living in rural areas are more likely to be undernourished, while females, higher-income households, and those consuming dairy, vegetables, and fruits daily exhibit lower odds of undernutrition. POLICY IMPLICATIONS: Policy implications highlight the urgent need for investment in piped water supply systems. Additionally, focused efforts are required to monitor and improve groundwater quality in regions with poor water quality. Policies should emphasize safe sanitation practices and enhance public awareness about the critical role of safe drinking water in improving child health.


Assuntos
Água Subterrânea , Qualidade da Água , Monitoramento Ambiental , Água Subterrânea/química , Índia/epidemiologia , Desnutrição/epidemiologia , Poluição da Água/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Concentração de Íons de Hidrogênio , Política Ambiental , Política de Saúde , Arsênio/análise , Humanos , Criança , Sulfatos/análise , Magnésio , Cloretos
8.
Sci Total Environ ; 944: 173983, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876341

RESUMO

Integrated health risk assessment strategies for emerging organic pollutants and heavy metals that coexist in water/soil media are lacking. Contents of perfluoroalkyl compounds and potentially toxic elements in multiple media were determined by investigating a county where a landfill and a tungsten mine coexist. The spatial characteristics and sources of contaminants were predicted by Geostatistics-based and multivariate statistical analysis, and their comprehensive health risks were assessed. The average contents of perfluorooctane acid, perfluorooctanesulfonic acid, arsenic, and cadmium in groundwater were 3.21, 0.77, 1.69, and 0.14 µg L-1, respectively; the maximum content of cadmium in soils and rice highly reached 2.12 and 1.52 mg kg-1, respectively. In soils, the contribution of mine lag to cadmium was 99 %, and fertilizer and pesticide to arsenic was 59.4 %. While in groundwater, arsenic, cadmium and perfluoroalkyl compounds near the landfill mainly came from leachate leakage. Significant correlations were found between arsenic in groundwater and arsenic and cadmium in soils, as well as perfluoroalkyl compounds in groundwater and pH and sulfate. Based on these correlations, the geographically optimal similarity model predicted high-level arsenic in groundwater near the tungsten mine and cadmium/perfluoroalkyl compounds around the landfill. The combination of analytic network process, entropy weighting method and game theory-based trade-off method with risk assessment model can assess the comprehensive risks of multiple pollutants. Using this approach, a high health-risk zone located around the landfill, which was mainly attributed to the presence of arsenic, cadmium and perfluorooctanesulfonic acid, was found. Overall, perfluoroalkyl compounds in groundwater altered the spatial pattern of health risks in an arsenic­cadmium contaminated area.


Assuntos
Arsênio , Cádmio , Monitoramento Ambiental , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Arsênio/análise , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Ácidos Alcanossulfônicos/análise , Mineração , China
9.
Sci Total Environ ; 944: 173873, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879035

RESUMO

In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.


Assuntos
Arsênio , Microbiologia do Solo , Arsênio/metabolismo , Arsênio/análise , Metilação , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Poluentes Químicos da Água/análise
10.
Food Chem Toxicol ; 189: 114760, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824991

RESUMO

Edible plants samples were analysed for non-carcinogenic and carcinogenic human health risks. The elements nickel (Ni), cadmium (Cd), arsenic (As), lead (Pb), chromium (Cr) and mercury (Hg) analysed using atomic absorption spectrophotometer (AAS). The recovery, limit of detection (LOD) and limit of quantification (LOQ) ranged from 75 to 89 %, 0.001-0.003 and 0.003-0.01, respectively. The mean value of Hg (0.34 mg/kg) exceeded the limit of 0.05 mg/kg recommended by World Health Organization (WHO). The estimated daily intake (EDI) of Cd in adults ranged from 7.93 × 10-7 to 1.43 × 10-4 and that of Hg from 0.07 to 1.27 and Cd (0.08 × 10-4) in children. These are below the oral reference doses (RfD). Hazard Quotient (HQ) of Hg in children was 1.92. The elements Hg and As obtained the highest total hazard (THI) index of 2.02 in mango1 and oil palm. Arsenic possessed the highest cancer risk of 4.5 × 10-4 in children and 1.9 × 10-4 in adults. Cancer risk (CR) ranged from low to moderate (10-6-10-4), which is below the limit of 10-3. The total carcinogenic risk (TCR) of the edible plants were above the limit of 10-6. The study identified minimal As and Hg pollution and carcinogenic risks in edible plants.


Assuntos
Contaminação de Alimentos , Plantas Comestíveis , Humanos , Plantas Comestíveis/química , Medição de Risco , Contaminação de Alimentos/análise , Criança , Arsênio/análise , Arsênio/toxicidade , Adulto , Metais Pesados/análise , Espectrofotometria Atômica
11.
J Public Health Manag Pract ; 30(4): E184-E187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833669

RESUMO

Chronic arsenic exposure is associated with adverse health outcomes, and early life exposure is particularly damaging. Households with pregnant people and young children drinking from unregulated wells in arsenic-prevalent regions are therefore a public health priority for outreach and intervention. A partnership between Columbia University, New Jersey government partners, and Hunterdon Healthcare has informed Hunterdon County residents of the risks faced from drinking arsenic-contaminated water and offered free well testing through a practice-based water test kit distribution and an online patient portal outreach. Encouraged by those successes, Hunterdon Healthcare incorporated questions about drinking water source and arsenic testing history into the electronic medical record (EMR) template used by most primary care practices in Hunterdon County. The new EMR fields allow for additional targeting of risk-based outreach and water test kit distribution, offering promising new opportunities for public health and environmental medicine outreach, surveillance, and research.


Assuntos
Água Potável , Registros Eletrônicos de Saúde , Saúde Pública , New Jersey , Humanos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Água Potável/análise , Saúde Pública/métodos , Arsênio/análise , Exposição Ambiental/prevenção & controle , Exposição Ambiental/efeitos adversos
12.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844320

RESUMO

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Assuntos
Arsênio , Cádmio , Poluentes do Solo , Solo , Cádmio/química , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Arsênio/análise , Arsênio/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Temperatura Alta
13.
Water Res ; 259: 121848, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824797

RESUMO

Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.


Assuntos
Arsênio , Monitoramento Ambiental , Fluoretos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Fluoretos/análise , Arsênio/análise , Poluentes Químicos da Água/análise , China
14.
Ecotoxicol Environ Saf ; 280: 116550, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843746

RESUMO

Desorption and adsorbent regeneration are imperative factors that are required to be taken into account when designing the adsorption system. From the environmental, economic, and practical points of view, regeneration is necessary for evaluating the efficiency and sustainability of synthesized adsorbents. However, no study has investigated the optimization of arsenic species desorption from spent adsorbents and their regeneration ability for reuse as well as safe disposal. This study aims to investigate the desorption ability of arsenic ions adsorbed on hybrid granular activated carbon and the optimization of the independent factors influencing the efficient recovery of arsenic species from the spent activated carbon using central composite design of the response surface methodology. The activated carbon before the sorption process and after the adsorption-desorption of arsenic ions have been characterized using SEM-EDX, FTIR, and TEM. The study found that all the investigated independent desorption variables greatly influence the retrievability of arsenic ions from the spent activated carbon. Using the desirability function for the optimization of the independent factors as a function of desorption efficiency, the optimum experimental conditions were solution pH of 2.00, eluent concentration of 0.10 M, and temperature of 26.63 ℃, which gave maximum arsenic ions recovery efficiency of 91 %. The validation of the quadratic model using laboratory confirmatory experiments gave an optimum arsenic ions desorption efficiency of 97 %. Therefore, the study reveals that the application of the central composite design of the response surface methodology led to the development of an accurate and valid quadratic model, which was utilized in the enhanced optimization of arsenic ions recovery from the spent reclaimable activated carbon. More so, the desorption isotherm and kinetic data of arsenic were well correlated with the Langmuir and the pseudo-second-order models, while the thermodynamics studies indicated that arsenic ions desorption process was feasible, endothermic, and spontaneous.


Assuntos
Arsênio , Carvão Vegetal , Poluentes Químicos da Água , Arsênio/química , Arsênio/análise , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Temperatura
15.
Sci Rep ; 14(1): 13698, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871780

RESUMO

Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.


Assuntos
Iodo , Alga Marinha , Oligoelementos , Alga Marinha/química , Alga Marinha/metabolismo , Humanos , Iodo/urina , Iodo/análise , Oligoelementos/urina , Oligoelementos/análise , Feminino , Masculino , Adulto , Arsênio/urina , Arsênio/análise , Pessoa de Meia-Idade , Selênio/urina , Selênio/análise
16.
Chemosphere ; 360: 142349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763400

RESUMO

Arsenic, ubiquitous in various industrial processes and consumer products, presents both essential functions and considerable toxicity risks, driving extensive research into safer applications. Our investigation, drawing from 7182 arsenic-containing molecules in the Cambridge Structural Database (CSD), outlines their diverse bonding patterns. Notably, 51% of these molecules exhibit cyclic connections, while 49% display acyclic ones. Arsenic forms eight distinct bonding types with other elements, with significant interactions observed, particularly with phenyl rings, O3 and F6 moieties. Top interactions involve carbon, nitrogen, oxygen, fluorine, sulfur, and arsenic itself. We meticulously evaluated average bond lengths under three conditions: without an R-factor cut-off, with R-factor ≤0.075, and with R-factor ≤0.05, supporting the credibility of our results. Comparative analysis with existing literature data enriches our understanding of arsenic's bonding behaviour. Our findings illuminate the structural attributes, molecular coordination, geometry, and bond lengths of arsenic with 68 diverse atoms, enriching our comprehension of arsenic chemistry. These revelations not only offer a pathway for crafting innovative and safer arsenic-based compounds but also foster the evolution of arsenic detoxification mechanisms, tackling pivotal health and environmental challenges linked to arsenic exposure across different contexts.


Assuntos
Arsênio , Mineração de Dados , Arsênio/química , Arsênio/análise , Bases de Dados de Compostos Químicos , Estrutura Molecular , Arsenicais/química
17.
J Environ Manage ; 360: 121190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763118

RESUMO

Arsenic (As) and cadmium (Cd) accumulation in rice grain is a global concern threatening food security and safety to the growing population. As and Cd are toxic non-essential elements poisonous to animal and human at higher levels. Its accumulation in agro-ecosystems pose a public health risk to consumers of agro-ecosystem products. Due to their hazards, As and Cd sources should be cleared, avoiding entering plants and the human body. As and Cd removal in soils and grains in agro-ecosystems has been conducted by various materials (natural and synthesized), however, there are little documentation on their contribution on As and Cd removal or reduction in rice grains. This identified knowledge gap necessitate a systematically review to understand efficiency and mechanisms of As and Cd availability reduction and removal in paddy farming areas through utilization of various synthetic and modified materials. To achieve this, published peer reviewed articles between 2010 and 2024 were collected from various database i.e., Science Direct, Web of Science, Google Scholar, and Research Gate and analyzed its content in respect to As and Cd reduction and removal. Furthermore, collected data were re-analyzed to determine standardized mean differences (SMD) with 95% confidence intervals (CI). Based on 96 studies with 228 observations involving Fe, Ca, Si, and Se-based materials were identified, it was found that application of Fe, Ca, Si, and Se-based materials potentially reduced As and Cd in rice grains among various study sites and across studies. Among the studied materials, Fe-based materials observed to be more efficient compared to other utilized materials. However, there little or no information on performance of materials when used in combination and how they can improve crop productivity and soil health, thus requiring further studies. Thus, this study confirm Fe, Ca, Si, and Se modified materials have significant potential to reduce As and Cd availability in paddy farming areas and rice grains, thus necessary effort must be made to ensure materials access and availability for farmers utilization in paddy fields to reduce As and Cd accumulation.


Assuntos
Agricultura , Arsênio , Cádmio , Oryza , Arsênio/análise , Solo/química , Poluentes do Solo/metabolismo , Humanos
18.
Sci Total Environ ; 935: 173424, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782284

RESUMO

Due to the natural biochar aging, the improvement of soil quality and immobilization of soil pollutants achieved by biochar may change; understanding the dynamic evolution of the in situ performance of biochar in these roles is essential to discuss the long-term sustainability of biochar remediation. Therefore, in this study, combined biochar from co-pyrolysis of pig manure and invasive Japanese knotweed - P1J1, as well as pure pig manure - PM - and pure Japanese knotweed - JK - derived biochar were applied to investigate their remediation performance in a high As- and Pb-polluted soil with prolonged incubation periods (up to 360 days). Biochar application, especially P1J1 and PM, initially promoted soil pH, dissolved organic carbon, and EC, but the improvements were not constant through time. The JK-treated soil exhibited the highest increase of soil organic matter (OM), followed by P1J1 and then PM, and OM did not change with aging. Biochar, especially P1J1, was a comprehensive nutrient source of Ca, K, Mg, and P to improve soil fertility. However, while soluble cationic Ca, K, and Mg increased with time, anionic P decreased over time, indicating that continuous P availability might not be guaranteed with the aging process. The total microorganism content declined with time; adding biochars slowed down this tendency, which was more remarkable at the later incubation stage. Biochar significantly impeded soil Pb mobility but mobilized soil As, especially in PM- and P1J1-treated soils. However, mobilized As gradually re-fixed in the long run; meanwhile, the excellent Pb immobilization achieved by biochars was slightly reduced with time. The findings of this study offer fresh insights into the alterations in metal(loid)s mobility over an extended duration, suggesting that the potential mobilization risk of As is reduced while Pb mobility slightly increases over time.


Assuntos
Arsênio , Biodegradação Ambiental , Chumbo , Mineração , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Esterco , Animais , Suínos , Pirólise , Chumbo/análise , Chumbo/química , Arsênio/análise , Arsênio/química , Reynoutria
19.
Water Res ; 258: 121767, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754296

RESUMO

The co-occurrence of high As and F concentrations in saline groundwater in arid and semi-arid regions has attracted considerable attention. However, the factors determining the elevated concentrations of the two elements in surface water in these regions have not been sufficiently studied, and their implications for the poor-quality of local groundwater (high levels of As, F, and salinity) are unknown. A total of 18 water samples were collected from Wuliangsu Lake, irrigation/drainage channels, and the Huanghe (i.e., Yellow River) in the Hetao Basin, China. The pH, concentrations of As and F as well as those of other major elements, and stable isotope (H and O) compositions were analyzed. The water samples had a high pH (7.85-9.01, mean 8.25) and high TDS (402-9778 mg/L, mean 1920 mg/L) values. In six of the 10 lake samples, As concentration was above 10 µg/L (maximum 69.1 µg/L) and, in one of them, F concentration was above 1.5 mg/L. Interestingly, the high As, F, and TDS values simultaneously detected in the lake water were similar to those previously reported in local groundwater, and all water samples showed a significant positive correlation between As and F concentrations (R2 = 0.96, p < 0.01), except for two samples with abnormally high Ca2+ levels. The results of stable isotope analysis and Cl/Br ratios suggested that the lake experienced strong evaporation, which is consistent with the high TDS values. Evaporative concentration is suggested as the main factor contributing to the elevated As and F concentrations in the lake water. In addition, the major ions (e.g., Na+, Cl-, HCO3-, and OH-) and pH in the lake water increased during evaporation, leading to desorption of As and F. Thus, the evaporation process, including evaporative concentration and desorption, was considered primarily responsible for the elevated As and F in the lake water. Based on the results of this study, we presume that the paleolakes in the study area have experienced intense evaporation process. As a result, As, F, and major elements accumulated in sediments (or residual lake water) and were buried in the fluvial basins; then, they were released into the groundwater through multiple (bio)hydrogeochemical processes. By combining the results of this study with those obtained from previous groundwater analyses, we propose a new hypothesis explaining the origin of elevated As and F concentrations in saline groundwater in arid and semi-arid regions.


Assuntos
Arsênio , Fluoretos , Água Subterrânea , Lagos , Poluentes Químicos da Água , Água Subterrânea/química , Lagos/química , China , Arsênio/análise , Poluentes Químicos da Água/análise , Fluoretos/análise , Monitoramento Ambiental , Rios/química , Concentração de Íons de Hidrogênio
20.
Environ Geochem Health ; 46(6): 208, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806960

RESUMO

Concentrations of potentially toxic elements (PTEs) like arsenic, uranium, iron, and nitrate in the groundwater of the Majha Belt (including Tarn Taran, Amritsar, Gurdaspur, and Pathankot districts) in Punjab, India were measured to evaluate the health risks associated with its consumption and daily use. The average concentrations of these elements in some locations exceeded the WHO-recommended values. Arsenic and iron toxicity levels were found to be higher in the Amritsar district, while uranium toxicity was more prevalent in Tarn Taran. The Trace Element Evaluation Index suggests that Amritsar is one of the districts most affected by toxic elements. According to the US Environmental Protection Agency's (USEPA) guidelines, the HQ values of U, Fe, and nitrate were less than one, indicating that there is no non-carcinogenic health risk for adults and children. However, the hazard quotient (HQ) value for arsenic was greater than one, indicating a higher possibility of health risk due to arsenic in the study area. The total hazard index values of 44.10% of samples were greater than four for arsenic, indicating that people in the Majha Belt are at a very high health risk due to the usage of water for drinking and domestic purposes. The cancer risk assessment values for arsenic in children (5.69E + 0) and adults (4.07E + 0) were higher than the accepted limit of USEPA (10-4 to 10-6) in the Majha Belt. The average radiological cancer risk values of U for children and adults were 8.68E-07 and 9.45E-06, respectively, which are well below the permissible limit of 1.67 × 10-4 suggested by the Atomic Energy Regulatory Board of DAE, India. The results of this study confirm that the residents of the Majha Belt who use contaminated groundwater are at a serious risk of exposure to arsenic in the Amritsar district and uranium in Tarn Taran district.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Índia , Água Subterrânea/química , Medição de Risco , Arsênio/análise , Poluentes Químicos da Água/análise , Humanos , Urânio/análise , Nitratos/análise , Monitoramento Ambiental , Ferro/análise , Criança , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...