Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(31): 12054-12067, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29887523

RESUMO

Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.


Assuntos
Coronavirus/química , Endorribonucleases/química , Nidovirales/química , Subunidades Proteicas/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Arterivirus/química , Arterivirus/classificação , Arterivirus/genética , Arterivirus/metabolismo , Sítios de Ligação , Clonagem Molecular , Coronavirus/classificação , Coronavirus/genética , Coronavirus/metabolismo , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Nidovirales/classificação , Nidovirales/genética , Nidovirales/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
2.
J Gen Virol ; 96(9): 2643-2655, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041874

RESUMO

The 3'-terminal domain of the most conserved ORF1b in three of the four families of the order Nidovirales (except for the family Arteriviridae) encodes a (putative) 2'-O-methyltransferase (2'-O-MTase), known as non structural protein (nsp) 16 in the family Coronaviridae and implicated in methylation of the 5' cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5' cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2'-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family Coronaviridae. Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and ß-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.


Assuntos
Proteínas Arqueais/metabolismo , Coronavirus/enzimologia , Equartevirus/metabolismo , Metiltransferases/metabolismo , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Arterivirus/química , Arterivirus/enzimologia , Arterivirus/genética , Coronavirus/química , Coronavirus/genética , Equartevirus/química , Equartevirus/genética , Metilação , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Poliproteínas/química , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
3.
J Virol ; 86(2): 773-85, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072774

RESUMO

The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I.


Assuntos
Infecções por Arterivirus/imunologia , Arterivirus/enzimologia , RNA Helicases DEAD-box/imunologia , Endopeptidases/imunologia , Febre Hemorrágica da Crimeia/imunologia , Imunidade Inata , Nairovirus/enzimologia , Proteínas Virais/imunologia , Animais , Arterivirus/química , Arterivirus/genética , Infecções por Arterivirus/enzimologia , Infecções por Arterivirus/virologia , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Febre Hemorrágica da Crimeia/enzimologia , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/virologia , Humanos , Camundongos , Camundongos Transgênicos , Nairovirus/química , Nairovirus/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Ubiquitina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Virol ; 82(9): 4480-91, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305048

RESUMO

The replication/transcription complex of the arterivirus equine arteritis virus (EAV) is associated with paired membranes and/or double-membrane vesicles (DMVs) that are thought to originate from the endoplasmic reticulum. Previously, coexpression of two putative transmembrane nonstructural proteins (nsp2 and nsp3) was found to suffice to induce these remarkable membrane structures, which are typical of arterivirus infection. Here, site-directed mutagenesis was used to investigate the role of nsp3 in more detail. Liberation of the hydrophobic N terminus of nsp3, which is normally achieved by cleavage of the nsp2/3 junction by the nsp2 protease, was nonessential for the formation of DMVs. However, the substitution of each of a cluster of four conserved cysteine residues, residing in a predicted luminal loop of nsp3, completely blocked DMV formation. Some of these mutant nsp3 proteins were also found to be highly cytotoxic, in particular, exerting a dramatic effect on the endoplasmic reticulum. The functionality of an engineered N glycosylation site in the cysteine-containing loop confirmed both its presence in the lumen and the transmembrane nature of nsp3. This mutant displayed an interesting intermediate phenotype in terms of DMV formation, with paired and curved membranes being formed, but DMV formation apparently being impaired. The effect of nsp3 mutations on replicase polyprotein processing was investigated, and several mutations were found to influence processing of the region downstream of nsp3 by the nsp4 main protease. When tested in an EAV reverse genetics system, none of the nsp3 mutations was tolerated, again underlining the crucial role of the protein in the arterivirus life cycle.


Assuntos
Arterivirus/química , Membranas Intracelulares/virologia , Proteínas não Estruturais Virais/fisiologia , Animais , Arterivirus/fisiologia , Arterivirus/ultraestrutura , Cavalos , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Replicação Viral
5.
Gene ; 191(2): 205-10, 1997 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-9218721

RESUMO

SHFV is a member of a new virus family which includes the genus arterivirus. We have cloned and sequenced 6,314 nt from the 3' end of the SHFV genome. This sequence encompasses nine complete ORFs which is three additional ORFs as compared to the other arteriviruses. We have numbered these ORFs 2a, 2b, 3, 4, 5, 6, 7, 8 and 9. At the 5' end of this sequence is a partial ORF (ORF 1b) of 1590 nt and at the 3' end is a poly(A) tract preceded by a 76 nt noncoding region. The coding capacity for each of the SHFV ORFs as well as the potential mass, pI and number of N-linked glycosylation sites for each of the encoded peptides was determined.


Assuntos
Arterivirus/genética , Genoma Viral , RNA Viral/química , Sequência de Aminoácidos , Animais , Arterivirus/química , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Glicosilação , Ponto Isoelétrico , Macaca/virologia , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Proteínas Virais/química
6.
J Virol ; 70(7): 4767-72, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8676504

RESUMO

Four structural proteins of Lelystad virus (Arteriviridae) were recognized by monoclonal antibodies in a Western immunoblotting experiment with purified virus. In addition to the 18-kDa integral membrane protein M and the 15-kDa nucleocapsid protein N, two new structural proteins with molecular masses of 45 to 50 kDa and 31 to 35 kDa, respectively, were detected. Monoclonal antibodies that recognized proteins of 45 to 50 kDa and 31 to 35 kDa immunoprecipitated similar proteins expressed from open reading frames (ORFs) 3 and 4 in baculovirus recombinants, respectively. Therefore, the 45- to 50-kDa protein is encoded by ORF3 and the 31- to 35-kDa protein is encoded by ORF4. Peptide-N-glycosidase F digestion of purified virus reduced the 45- to 50-kDa and 31- to 35-kDa proteins to core proteins of 29 and 16 kDa, respectively, which indicates N glycosylation of these proteins in the virion. Monoclonal antibodies specific for the 31- to 35-kDa protein neutralized Lelystad virus, which indicates that at least part of this protein is exposed at the virion surface. We propose that the 45- to 50-kDa and 31- to 35-kDa structural proteins of Lelystad virus be named GP3 and GP4, to reflect their glycosylation and the ORFs from which they are expressed. Antibodies specific for GP3 and GP4 were detected by a Western immunoblotting assay in swine serum after an infection with Lelystad virus.


Assuntos
Arterivirus/genética , Proteínas Estruturais Virais/genética , Vírion/química , Amidoidrolases/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Arterivirus/química , Arterivirus/imunologia , Baculoviridae , Sequência de Bases , Western Blotting , Primers do DNA , Genoma Viral , Hexosaminidases/metabolismo , Dados de Sequência Molecular , Testes de Neutralização , Fases de Leitura Aberta , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Testes de Precipitina , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vírion/genética
7.
Arch Virol ; 141(7): 1357-65, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8774694

RESUMO

The structural polypeptides of the isolate VR-2332 of porcine reproductive and respiratory syndrome virus were analyzed in sucrose gradient-purified virions. The virus had an average density of 1.15 g/cm3 and contained, by SDS-PAGE, three major polypeptides with apparent molecular weights of 15, 19 and 26-30 kDa, which were designated as nucleocapsid (N), matrix (M) and envelope (E), respectively. The predominant structural protein was N. N-glycosidase F digestion only affected E whereas O-glycosidase or endoglycosidase H digestion had no effect, suggesting that the viral glycoproteins contain only complex N-linked carbohydrates.


Assuntos
Arterivirus/química , Proteínas Estruturais Virais/análise , Peso Molecular
8.
Arch Virol ; 140(8): 1405-18, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-7661693

RESUMO

The cDNA sequence of the 3'-terminal genomic region of the Québec IAF-exp91 strain of porcine reproductive and respiratory syndrome virus (PRRSV) was determined and compared to those of other reference strains from Europe (Lelystad virus) and US (ATCC VR2385, MN-1b). The sequence (2834 nucleotides) which encompassed ORFs 3 to 7 revealed extensive genomic variations between the Québec strain and Lelystad virus (LV), resulting from high number of base substitutions, additions and deletions. The ORFs 5, 3, and 7 seemed to be relatively the most variable; the predicted encoding products of the Québec and LV strains displayed only 52%, 54%, and 59% amino acid identities, respectively. Nevertheless, in vitro translation experiments of the structural genes (ORFs 5, 6, and 7) and radioimmunoprecipitation assays with extracellular virions gave results similar to those previously reported for LV. In contrast, close genomic relationships were demonstrated between Québec and US strains. Taking together, these results indicate that, although structurally similar, North American PRRSV strains belong to a genotype distinct from that of the LV, thus supporting previous findings that allowed to divide PRRSV isolates into two antigenic subgroups (U.S. and European).


Assuntos
Arterivirus/genética , Genes Virais , Genoma Viral , Fases de Leitura Aberta/genética , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Arterivirus/química , Arterivirus/classificação , Sequência de Bases , Sequência Conservada , DNA Complementar/genética , Europa (Continente) , Dados de Sequência Molecular , Quebeque , Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...