Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11306, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760487

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.


Assuntos
Microbioma Gastrointestinal , Hemípteros , RNA Ribossômico 16S , Simbiose , Asas de Animais , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Asas de Animais/microbiologia , Feminino , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética
2.
Poult Sci ; 100(1): 256-262, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357688

RESUMO

Peroxy acetic acid (PAA) is widely used as an antimicrobial in poultry processing, specifically in the chiller. While the natural pH of PAA at the concentrations used is between 4.5 and 6.0, poultry processors adjust the pH to ≥8.0 to maintain product yield. The objective of this study was to evaluate 1) efficacy of PAA at different concentrations, pH, and contact times against Salmonella, Campylobacter, and Escherichia coli and 2) use of E. coli as a surrogate for Salmonella and Campylobacter to conduct validations studies for poultry processing. Fresh chicken wings (0.45 Kg) were inoculated with a cocktail of nalidixic acid-resistant Salmonella Typhimurium, rifampicin-resistant E. coli (5-strain cocktail), and gentamicin-resistant Campylobacter coli. Inoculated chicken wings were immersed in PAA solutions of 50, 250, and 500 ppm adjusted to pH 8.2 and 10.0 as well as nonadjusted PAA solutions for 10 s and 60 min. Treated chicken wings were rinsed in chilled buffered peptone water, serially diluted, and plated on Petrifilm APC for enumerating Salmonella and E. coli populations and spread plated on Campy Cefex Agar containing gentamicin (200 ppm) to enumerate Campylobacter. Immersion of chicken wings in 500 ppm of PAA (non-pH-adjusted) for 60 min resulted in greater microbial reductions (P ≤ 0.05) of Salmonella, Campylobacter, and E. coli populations of 2.56, 1.90, and 2.53 log CFU/mL, respectively. Higher concentrations and longer exposure times resulted in greater reductions (P ≤ 0.05) of Salmonella, E. coli, and Campylobacter populations, and increasing pH of PAA solution did not affect (P > 0.05) its efficacy. A high correlation (r = 0.93) was observed between E. coli (surrogate) and Salmonella populations suggesting that E. coli can be used as a surrogate for Salmonella for conducting validation studies for antimicrobial efficacy testing in poultry processing.


Assuntos
Campylobacter , Escherichia coli , Manipulação de Alimentos , Carne , Ácido Peracético , Salmonella , Animais , Antibacterianos/farmacologia , Campylobacter/efeitos dos fármacos , Galinhas , Contagem de Colônia Microbiana/veterinária , Escherichia coli/efeitos dos fármacos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Carne/microbiologia , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Asas de Animais/microbiologia
3.
J Wildl Dis ; 56(4): 759-767, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609601

RESUMO

Pseudogymnoascus destructans colonizes the wing membrane of hibernating bats with the potential to form dense fungal hyphae aggregates within cupping erosions. These fungal cupping erosions emit a characteristic fluorescent orange-yellow color when the wing membrane is transilluminated with 385 nm ultraviolet (UV) light. The purpose of this study was to create and validate the R package, countcolors, for quantifying the distinct orange-yellow UV fluorescence in bat-wing membrane lesions caused by P. destructans. Validation of countcolors was completed by first quantifying the percent area of 20, 2.5 cm2 images. These generated images were of two known pixel colors ranging from 0% to 100% of the pixels. The countcolors package accurately measured the known proportion of a given color in each image. Next, 40, 2.5 cm2 sections of UV transilluminated photographs of little brown bat (Myotis lucifugus) wings were given to a single evaluator. The area of fluorescence was both manually measured and calculated using image analysis software and quantified with countcolors. There was good agreement between the two methods (Pearson's correlation=0.915); however, the manual use of imaging software showed a consistent negative bias. Reproducibility of the analysis methods was tested by providing the same images to naive evaluators who previously never used the software; no significant difference (P=0.099) was found among evaluators. Using the R package countcolors takes less time than does manually measuring the fluorescence in image analysis software, and our results showed that countcolors can improve the accuracy when quantifying the area of P. destructans infection in bat wing-membranes.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Hibernação , Processamento de Imagem Assistida por Computador/métodos , Asas de Animais/microbiologia , Animais , Dermatomicoses/diagnóstico , Dermatomicoses/veterinária , Fluorescência , Reprodutibilidade dos Testes , Raios Ultravioleta
4.
Virulence ; 11(1): 781-794, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32552222

RESUMO

Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.


Assuntos
Ascomicetos/genética , Quirópteros/microbiologia , Dermatomicoses/veterinária , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Animais , Ascomicetos/patogenicidade , Quirópteros/classificação , Dermatomicoses/microbiologia , Nariz/microbiologia , Nariz/patologia , Filogenia , Especificidade da Espécie , Asas de Animais/microbiologia , Asas de Animais/patologia
5.
Mycopathologia ; 184(5): 625-636, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31529298

RESUMO

Pseudogymnoascus destructans is the causative agent of a fungal infection of bats known as white-nose syndrome (WNS). Since its discovery in 2006, it has been responsible for precipitous declines of several species of cave-dwelling North American bats. While numerous advancements in the understanding of the disease processes underlying WNS have been made in recent years, there are still many aspects of WNS, particularly with respect to pathogen virulence, that remain unknown. In this preliminary investigation, we sought to further elucidate the disease cycle by concentrating on the pathogen, with specific focus on its ability to utilize lipids that compose bat wing sebum and are found in wing membranes, as a substrate for energy and growth. In vitro growth experiments were conducted with the three most common fatty acids that comprise bat sebum: oleic, palmitic, and stearic acids. None of the fatty acids were observed to contribute a significant difference in mean growth from controls grown on SDA, although morphological differences were observed in several instances. Additionally, as an accompaniment to the growth experiments, bat wing explants from Perimyotis subflavus and Eptesicus fuscus were fluorescently stained to visualize the difference in distribution of 16- and 18-carbon chain fatty acids in the wing membrane. Which substrates contribute to the growth of P. destructans is important to understanding the progressive impact P. destructans has on bat health through the course of the disease cycle.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ácidos Graxos/metabolismo , Lipólise , Sebo/química , Animais , Quirópteros , Feminino , Masculino , Sebo/microbiologia , Asas de Animais/química , Asas de Animais/microbiologia
6.
Appl Microbiol Biotechnol ; 103(4): 1801-1810, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617534

RESUMO

Calcium signaling plays important roles in stress tolerance and virulence in fungi. Mid1, an accessory protein of Cch1 calcium channel, has been discussed in baker's yeast and some filamentous fungi. However, functions of the Mid1 gene in entomopathogenic fungi are not clear. In this study, the Mid1 gene was functionally characterized by deleting it in the entomopathogenic fungus Metarhizium acridum. The growth of the ΔMaMid1 mutant was similar as the wild type on normal growth medium, but inhibited by exogenous Ca2+, Fe2+, Mg2+, Mn2+, Li+, and calcium chelator ethylene glycol tetraacetic acid (EGTA). Cation transportation-related genes were upregulated and intracellular calcium concentration was decreased in ΔMaMid1. Deletion of the MaMid1 gene impaired the tolerance to cell wall-disrupting agents but had no impact on heat or ultraviolet irradiation tolerance compared with the wild type. Bioassays showed that ΔMaMid1 had decreased virulence, with defects in the ability to penetrate the host cuticle. Compared with the wild type, appressorium formation on locust wings and fungal growth in the insect hemocoel were significantly decreased in the ΔMaMid1 mutant in a bioassay through topical inoculation. The phenotypes of ΔMaMid1 were fully restored in a complementation strain. Taken together, our study demonstrates that the MaMid1 affects intracellular ion homeostasis and contributes to virulence by affecting the initial penetration process in M. acridum.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Transporte de Íons , Metarhizium/crescimento & desenvolvimento , Metarhizium/metabolismo , Animais , Bioensaio , Meios de Cultura/química , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Insetos , Metarhizium/genética , Virulência , Asas de Animais/microbiologia
7.
J Theor Biol ; 464: 98-103, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578799

RESUMO

Where microbes colonizing skin surface may help maintain organism homeostasis, those that invade living skin layers cause disease. In bats, white-nose syndrome is a fungal skin infection that affects animals during hibernation and may lead to mortality in severe cases. Here, we inferred the amount of fungus that had invaded skin tissue of diseased animals. We used simulations to estimate the unobserved disease severity in a non-lethal wing punch biopsy and to relate the simulated pathology to the measured fungal load in paired biopsies. We found that a single white-nose syndrome skin lesion packed with spores and hyphae of the causative agent, Pseudogymnoascus destructans, contains 48.93 pg of the pathogen DNA, which amounts to about 1560 P destructans genomes in one skin lesion. Relating the information to the known UV fluorescence in Nearctic and Palearctic bats shows that Nearctic bats carry about 1.7 µg of fungal DNA per cm2, whereas Palearctic bats have 0.04 µg cm-2 of P. destructans DNA. With the information on the fungal load that had invaded the host skin, the researchers can now calculate disease severity as a function of invasive fungal growth using non-destructive UV light transillumination of each bat's wing membranes. Our results will enable and promote thorough disease severity assessment in protected bat species without the need for extensive animal and laboratory labor sacrifices.


Assuntos
Ascomicetos , Quirópteros/microbiologia , Dermatomicoses , Hibernação , Pele/microbiologia , Raios Ultravioleta , Asas de Animais/microbiologia , Animais , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Dermatomicoses/microbiologia , Dermatomicoses/prevenção & controle , Dermatomicoses/terapia , Dermatomicoses/veterinária
8.
PLoS One ; 13(10): e0201865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365488

RESUMO

Aphids, like most animals, mount a diverse set of defenses against pathogens. For aphids, two of the best studied defenses are symbiont-conferred protection and transgenerational wing induction. Aphids can harbor bacterial symbionts that provide protection against pathogens, parasitoids and predators, as well as against other environmental stressors. In response to signals of danger, aphids also protect not themselves but their offspring by producing more winged than unwinged offspring as a way to ensure that their progeny may be able to escape deteriorating conditions. Such transgenerational wing induction has been studied most commonly as a response to overcrowding of host plants and presence of predators, but recent evidence suggests that pea aphids (Acyrthosiphon pisum) may also begin to produce a greater proportion of winged offspring when infected with fungal pathogens. Here, we explore this phenomenon further by asking how protective symbionts, pathogen dosage and environmental conditions influence this response. Overall, while we find some evidence that protective symbionts can modulate transgenerational wing induction in response to fungal pathogens, we observe that transgenerational wing induction in response to fungal infection is highly variable. That variability cannot be explained entirely by symbiont association, by pathogen load or by environmental stress, leaving the possibility that a complex interplay of genotypic and environmental factors may together influence this trait.


Assuntos
Afídeos/genética , Ecologia , Micoses/genética , Simbiose/genética , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/microbiologia , Fungos/patogenicidade , Micoses/microbiologia , Fenótipo , Simbiose/fisiologia , Vespas/genética , Vespas/crescimento & desenvolvimento , Vespas/microbiologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/microbiologia
9.
J Wildl Dis ; 54(3): 480-490, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29617187

RESUMO

Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.


Assuntos
Quirópteros/microbiologia , Micoses/veterinária , Asas de Animais/fisiologia , Animais , Ascomicetos , Feminino , Masculino , Micoses/patologia , Asas de Animais/microbiologia
10.
J Avian Med Surg ; 32(1): 45-49, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29698074

RESUMO

A 23-year-old, 425-g male African grey parrot ( Psittacus erithacus) was evaluated for chronic ulcerative dermatitis of the axillary regions under both wings. Initial swab cultures of the sites had revealed a coagulase-positive methicillin-resistant Staphylococcus aureas (MRSA) with marked antibiotic resistance. A second swab culture obtained 8 weeks after the initial culture showed heavy growth of a coagulase-positive Staphylococcus species, which could not be speciated, but showed the same sensitivity as the previous culture. Previous treatment included systemic antibiotics and a topical antimicrobial cream, with variable response and only temporary resolution. On examination, full-thickness, ulcerative, necrotic dermatitis was present under both wings with intermittent bleeding and subdermal tissue exposure. Initial treatment included wound debridement, oral antibiotics, topical therapy, analgesics, and bandages. After a relapse, a poloxamer gel containing 2% doxycycline, 1% chloramphenicol, and 0.5% mupirocin was used in combination with oral antibiotics and analgesics. On follow-up examination, the skin lesions had completely resolved and the patient was doing well and remains normal 4 years later. This report emphasizes the importance of prompt, aggressive multi-modal therapy for MRSA and other dermal bacterial infections in pet birds that may represent zoonoses or have carrier-state zoonotic potential. Preparation by a compounding pharmacy of a transdermal poloxamer gel containing antibiotics shows promise for severe, infected, ulcerative skin lesions in birds when other therapies fail to achieve a cure.


Assuntos
Antibacterianos/uso terapêutico , Doenças das Aves/tratamento farmacológico , Dermatite/veterinária , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Papagaios , Infecções Cutâneas Estafilocócicas/veterinária , Administração Tópica , Animais , Antibacterianos/administração & dosagem , Doenças das Aves/microbiologia , Doenças das Aves/cirurgia , Doença Crônica , Desbridamento/veterinária , Dermatite/tratamento farmacológico , Dermatite/microbiologia , Dermatite/cirurgia , Géis , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Poloxâmero/administração & dosagem , Poloxâmero/química , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/cirurgia , Úlcera/tratamento farmacológico , Úlcera/microbiologia , Úlcera/cirurgia , Úlcera/veterinária , Asas de Animais/microbiologia , Asas de Animais/patologia , Asas de Animais/cirurgia
11.
Poult Sci ; 96(11): 4038-4045, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050406

RESUMO

This study aims to evaluate the microbiological quality and efficacy of antimicrobials to inactivate unstressed or cold-stress adapted Salmonella and Enterococcus on broiler carcasses and wings processed at a small USDA-inspected slaughter facility in West Virginia. The first part of the study included 42 carcasses that were pre- and secondarily-enriched in bacterial media followed by streak-plating onto XLT-4 and HardyCHROM™-agar Salmonella and confirmation using an API20E-kit. The aerobic plate counts (APC), Escherichia coli (ECC), total coliforms (TCC), and yeast/molds were analyzed on petri-films. The second part of the study included fresh broiler carcasses and wings that were inoculated with unstressed and cold-stress-adapted (4 °C, 7-day) Salmonella Typhimurium and Tennessee, and Enterococcus faecium ATCC 8459 (5.5 to 6.0 log10CFU/mL) and later dipped into peroxyacetic acid (PAA; 1,000 ppm), lactic acid (LA; 5%), lactic and citric acid blend (LCA; 2.5%), and sodium hypochlorite (SH; 70 ppm) for 30 s without (carcasses) or with 2-min drainage (wings). The surviving bacteria were recovered onto non-selective and selective agar to analyze the total microbial population, Salmonella and Enterococcus. APC, TCC, and Yeast/Molds were 2.62, 1.08, and 2.37 log10CFU/mL on broiler carcasses, respectively. A total of 30 and 40% of the carcasses tested positive for Salmonella spp. and E. coli (0.48 to 1.70 log10CFU/mL), respectively. For carcasses, antimicrobial reductions of cold-stress-adapted cells of Salmonella and Enterococcus were greater (P < 0.05) than the unstressed cells. For wings, cold-stress-adapted Salmonella were more (P < 0.05) sensitive to antimicrobials than unstressed cells; however, unstressed and cold-stress-adapted Enterococcus behaved similarly (P > 0.05). The reduction of Salmonella and Enterococcus on carcasses and wings increased in the order of SH ≤ LCA < LA < PAA and irrespective of unstressed or cold-stress-adapted cells. Applying post-chilling antimicrobial dipping treatments could be an intervention approach to control Salmonella on locally processed broilers. In addition, Enterococcus faecium could be a Salmonella surrogate for in-plant validation studies.


Assuntos
Anti-Infecciosos/farmacologia , Enterococcus faecium/efeitos dos fármacos , Microbiologia de Alimentos , Fungos/efeitos dos fármacos , Carne/microbiologia , Salmonella/efeitos dos fármacos , Leveduras/efeitos dos fármacos , Matadouros , Adaptação Fisiológica , Animais , Galinhas/microbiologia , Temperatura Baixa , Escherichia coli/efeitos dos fármacos , Asas de Animais/microbiologia
12.
Appl Microbiol Biotechnol ; 101(23-24): 8571-8584, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29079863

RESUMO

Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Metarhizium/genética , Metarhizium/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas Fúngicas/genética , Deleção de Genes , Regulação da Expressão Gênica , Gafanhotos/microbiologia , Hifas/crescimento & desenvolvimento , Metarhizium/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Virulência , Fatores de Virulência/genética , Asas de Animais/microbiologia , Asas de Animais/patologia
13.
PLoS One ; 12(8): e0180435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767673

RESUMO

While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Dermatopatias/patologia , Asas de Animais/microbiologia , Asas de Animais/patologia , Animais , Ascomicetos/genética , Quirópteros/metabolismo , DNA Fúngico/genética , Modelos Lineares , Imagem Óptica , Filogenia , Índice de Gravidade de Doença , Dermatopatias/microbiologia , Raios Ultravioleta , Asas de Animais/efeitos da radiação
14.
Appl Microbiol Biotechnol ; 101(11): 4683-4690, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28246886

RESUMO

Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8T and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8T and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.


Assuntos
Nanoestruturas , Odonatos/microbiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Asas de Animais/microbiologia , Animais , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Asas de Animais/ultraestrutura
15.
Sci Rep ; 6: 33200, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620349

RESUMO

Pathogenic and non-pathogenic related microorganisms differ in secondary metabolite production. Here we show that riboflavin overproduction by a fungal pathogen and its hyperaccumulation in affected host tissue exacerbates a skin infection to necrosis. In white-nose syndrome (WNS) skin lesions caused by Pseudogymnoascus destructans, maximum riboflavin concentrations reached up to 815 µg ml(-1), indicating bioaccumulation and lack of excretion. We found that high riboflavin concentrations are cytotoxic under conditions specific for hibernation, affect bats' primary fibroblasts and induce cell detachment, loss of mitochondrial membrane potential, polymerization of cortical actin, and cell necrosis. Our results explain molecular pathology of WNS, where a skin infection becomes fatal. Hyperaccumulation of vitamin B2 coupled with reduced metabolism and low tissue oxygen saturation during hibernation prevents removal of excess riboflavin in infected bats. Upon reperfusion, oxygen reacts with riboflavin resulting in dramatic pathology after arousal. While multiple molecules enable invasive infection, riboflavin-associated extensive necrosis likely contributes to pathophysiology and altered arousal pattern in infected bats. Bioaccumulation of a vitamin under natural infection represents a novel condition in a complex host-pathogen interplay.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Dermatomicoses/microbiologia , Riboflavina/metabolismo , Asas de Animais/microbiologia , Animais , Ascomicetos/classificação , Ascomicetos/genética , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Interações Hospedeiro-Patógeno , Potencial da Membrana Mitocondrial , Microscopia Eletrônica , Filogenia , Fatores de Virulência/metabolismo , Asas de Animais/citologia , Asas de Animais/ultraestrutura
16.
Poult Sci ; 95(9): 2011-22, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27083544

RESUMO

Using the response to Mycobacterium butyricum as the test-immune response, the main goal of this study was to demonstrate the suitability of the growing feather (GF) as a dermal test site and window into in vivo cellular/tissue responses (US-Patent 8,216,551). Using M. butyricum immunized chickens, the specific objectives were to: 1) compare the leukocyte infiltration response to intra-dermally injected M. butyricum in GF, wattles, and wing webs; 2) use GF as the test site to monitor leukocyte response profiles to recall antigen in the same individuals; and 3) gain new knowledge regarding the local response to M. butyricum in chickens. For objective 1, chickens were euthanized for tissue collection at 4 to 6, 24, 48, and 72 h after intra-dermal antigen injection. Leukocyte infiltration profiles were determined using immunochemical and conventional histology. Data from this study established the similarities between the cellular response in GF, wattles, and wing webs and uncovered many advantages of working with GF. For objective 2, antigen was injected into multiple GF per individual. GF were collected before and at 0.25, 1, 2, 3, and 7 d post injection and processed for cell population analysis by flow cytometry. Advantages of the approach used in objective 2 included a technically easier, more comprehensive, and more objective leukocyte profile analysis; same-day data acquisition; and, most importantly, easy, minimally invasive sample collection from the same individual throughout the study. Both studies contributed new knowledge regarding the local cutaneous response to M. butyricum in M. butyricum immunized chickens and confirmed the cell-mediated nature of the immune response to M. butyricum (e.g., elevated levels [P < 0.05] of T cells [CD4+ and CD8+], macrophages and MHC class II+-cells on days one to 3 post injection in M. butyricum- compared to PBS-injected tissues). The use of GF as an "in vivo test tube" to monitor local innate and adaptive immune activities will find direct application in vaccine development, as well as in the assessment and optimization of immune system development and function in poultry.


Assuntos
Galinhas , Crista e Barbelas/imunologia , Plumas/imunologia , Infecções por Mycobacterium/veterinária , Doenças das Aves Domésticas/imunologia , Asas de Animais/microbiologia , Animais , Crista e Barbelas/microbiologia , Plumas/microbiologia , Imunização/veterinária , Contagem de Leucócitos/veterinária , Leucócitos/imunologia , Masculino , Mycobacterium/fisiologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Doenças das Aves Domésticas/microbiologia , Asas de Animais/imunologia
17.
J Food Prot ; 78(11): 1967-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555519

RESUMO

Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings.


Assuntos
Cetilpiridínio/farmacologia , Aditivos Alimentares/farmacologia , Conservação de Alimentos/métodos , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Sulfatos/farmacologia , Ácidos Sulfúricos/farmacologia , Asas de Animais/microbiologia , Animais , Galinhas , Contaminação de Alimentos/prevenção & controle , Salmonella/crescimento & desenvolvimento
18.
J Theor Biol ; 385: 1-7, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26343860

RESUMO

A natural biomaterial has been discovered with bactericidal activities, which is mainly attributed to its nanopatterned surface structure. The surface of Clanger cicada (Psaltoda claripennis) wings has been identified as a natural bactericidal material, which has lead to the emergence of research on the development of novel antibacterial surfaces. From the interactions between bacterial biofilms and nanopatterned surface structures, a new mechanical model is proposed that investigates the rupture of bacterial cells within the framework of the "stretching" theory. The effect of surface nanoroughness on the survival of bacterial cells is evaluated by determining the stretching ability of their cell walls. The results, calculated using Gram-positive and Gram-negative bacteria as examples, show a correlation between the stretching of the cell wall and the geometric parameters of the surface structures. The theoretical results indicate that for a given cell rigidity, the bactericidal nature of the surface is determined by the geometric parameters of the surface structures.


Assuntos
Hemípteros/microbiologia , Modelos Biológicos , Nanoestruturas/microbiologia , Asas de Animais/microbiologia , Animais , Antibacterianos/farmacologia , Biofilmes , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Hemípteros/ultraestrutura , Interações Hospedeiro-Patógeno , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Asas de Animais/ultraestrutura
20.
Physiol Biochem Zool ; 88(4): 425-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052639

RESUMO

Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.


Assuntos
Ascomicetos , Quirópteros/metabolismo , Quirópteros/microbiologia , Dermatomicoses/veterinária , Glicerofosfolipídeos/análise , Esfingomielinas/análise , Animais , Dermatomicoses/metabolismo , Pele/metabolismo , Pele/microbiologia , Asas de Animais/metabolismo , Asas de Animais/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...