RESUMO
The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.
Assuntos
Astrócitos , Sistema Nervoso Central , Glutamato-Amônia Ligase , Urocordados , Animais , Urocordados/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Astrócitos/fisiologia , Astrócitos/metabolismo , Astrócitos/citologia , Glutamato-Amônia Ligase/metabolismo , Regeneração Nervosa/fisiologiaRESUMO
Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.
Assuntos
Cérebro , Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Neurogênese , Organoides , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Cérebro/citologia , Cérebro/crescimento & desenvolvimento , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/urina , Técnicas de Cultura de Células em Três Dimensões , Humanos , Neurônios/citologia , Astrócitos/citologia , Linhagem da CélulaRESUMO
Epidemiological studies demonstrate that arsenic exposure is associated with cognitive dysfunction. Experimental arsenic exposure models showed learning and memory deficits and molecular changes resembling the functional and pathologic neurodegeneration features. The present work focuses on hippocampal pathological changes in Wistar rats induced by continuous arsenic exposure from in utero up to 12 months of age, evaluated by magnetic resonance imaging along with immunohistochemistry. Diffusion-weighted images revealed age-related lower fractional anisotropy and higher radial-axial and mean diffusivity at 6 and 12 months, indicating that arsenic exposure leads to hippocampal demyelination. These structural alterations were paralleled by immunohistochemical changes that showed a significant loss of myelin basic protein in CA1 and CA3 regions accompanied by increased glial fibrillary acidic protein expression at all time-points studied. Concomitantly, arsenic exposure induced an altered morphology of astrocytes at all studied ages, whereas increased synaptogenesis was only observed at two months of age. These results suggest that environmental arsenic exposure is linked to impaired hippocampal connectivity and perhaps early glial senescence, which together might resemble a premature aging phenomenon leading to cognitive deficits.
Assuntos
Arsênio/farmacologia , Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/citologia , Forma Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Substância Branca/citologia , Substância Branca/diagnóstico por imagemRESUMO
Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.
Assuntos
Astrócitos/metabolismo , Epigênese Genética , Gliose/genética , Animais , Astrócitos/citologia , Astrócitos/patologia , Diferenciação Celular , Gliose/metabolismo , HumanosRESUMO
BACKGROUND: Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvß3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration. METHODS: Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including: PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy. RESULTS: We identified PAR-3 as a Syndecan-4-binding protein. Its interaction depended on the carboxy-terminal EFYA sequence present on Syndecan-4. In astrocytes where PAR-3 expression was reduced, Thy-1-induced cell migration and focal adhesion disassembly was impaired. This effect was associated with a sustained Focal Adhesion Kinase activation in the siRNA-PAR-3 treated cells. Our data also show that Thy-1/CD90 activates Tiam1, a PAR-3 effector. Additionally, we found that after Syndecan-4 silencing, Tiam1 activation was decreased and it was no longer recruited to the membrane. Syndecan-4/PAR-3 interaction and the alteration in focal adhesion dynamics were validated in mouse embryonic fibroblast (MEF) cells, thereby identifying this novel Syndecan-4/PAR-3 signaling complex as a general mechanism for mesenchymal cell migration involved in Thy-1/CD90 stimulation. CONCLUSIONS: The newly identified Syndecan-4/PAR-3 signaling complex participates in Thy-1/CD90-induced focal adhesion disassembly in mesenchymal cells. The mechanism involves focal adhesion kinase dephosphorylation and Tiam1 activation downstream of Syndecan-4/PAR-3 signaling complex formation. Additionally, PAR-3 is defined here as a novel adhesome-associated component with an essential role in focal adhesion disassembly during polarized cell migration. These novel findings uncover signaling mechanisms regulating cell migration, thereby opening up new avenues for future research on Syndecan-4/PAR-3 signaling in processes such as wound healing and scarring.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Adesões Focais/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Polaridade Celular , Fibroblastos/metabolismo , Inativação Gênica , Camundongos , Microtúbulos/metabolismo , Ligação Proteica , Ratos , Antígenos Thy-1/metabolismoRESUMO
Astrocytes are essential for lipid neuronal metabolism in long-distance uninterrupted migratory flights, when glucose is not available as the main source of energy. We previously demonstrated in Calidris pusilla that after uninterrupted 5 days transatlantic flight, astrocytes shrink and reduce its number in the hippocampal formation. Here we shifted our attention to the wintering period and tested the hypothesis that hippocampal astrocyte morphology of A interpres will change as the wintering period progresses towards the premigration window. To that end we used Arenaria interpres, which also crosses the Atlantic Ocean and reaches the mangroves of the Amazon River estuary for wintering. Birds were captured in September/October (closer to the arrival in the coast of Bragança, Para, Brazil for wintering) and in April/May (closer to the departure towards the breeding sites) and had their brains processed for selective GFAP-astrocyte immunolabeling. Three-dimensional reconstructions of the immunostained astrocytes were performed and morphological classification was done based on hierarchical cluster and discriminant analysis of multimodal morphometric features. We found two morphological phenotypes of astrocytes in the newcomers which differentially increased its morphological complexities as wintering period progresses towards the pre-migration window. Taken together, our findings demonstrate that the long-distance non-stop flight and wintering period differentially affected the two astrocytes morphotypes, suggesting distinct physiological roles for these cells. We suggest that morphological changes during the wintering period, may be part of the adaptive plasticity of the local hippocampal circuits of A. interpres in preparation for the long journey back to their breeding sites in the north hemisphere.
Assuntos
Migração Animal/fisiologia , Astrócitos/citologia , Charadriiformes/fisiologia , Hipocampo/citologia , Animais , Forma Celular , EstuáriosRESUMO
Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.
Assuntos
Diferenciação Celular , Membrana Celular/fisiologia , Elasticidade , Células-Tronco Neurais/citologia , Animais , Astrócitos/citologia , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Células Cultivadas , Meios de Cultura , Citoesqueleto/metabolismo , Camundongos , Pinças ÓpticasRESUMO
In the last few decades, it has been established that astrocytes play key roles in the regulation of neuronal morphology. However, the contribution of astrocyte-derived small extracellular vesicles (sEVs) to morphological differentiation of neurons has only recently been addressed. Here, we showed that cultured astrocytes expressing a GFP-tagged version of the stress-regulated astrocytic enzyme Aldolase C (Aldo C-GFP) release small extracellular vesicles (sEVs) that are transferred into cultured hippocampal neurons. Surprisingly, Aldo C-GFP-containing sEVs (Aldo C-GFP sEVs) displayed an exacerbated capacity to reduce the dendritic complexity in developing hippocampal neurons compared to sEVs derived from control (i.e., GFP-expressing) astrocytes. Using bioinformatics and biochemical tools, we found that the total content of overexpressed Aldo C-GFP correlates with an increased content of endogenous miRNA-26a-5p in both total astrocyte homogenates and sEVs. Notably, neurons magnetofected with a nucleotide sequence that mimics endogenous miRNA-26a-5p (mimic 26a-5p) not only decreased the levels of neuronal proteins associated to morphogenesis regulation, but also reproduced morphological changes induced by Aldo-C-GFP sEVs. Furthermore, neurons magnetofected with a sequence targeting miRNA-26a-5p (antago 26a-5p) were largely resistant to Aldo C-GFP sEVs. Our results support a novel and complex level of astrocyte-to-neuron communication mediated by astrocyte-derived sEVs and the activity of their miRNA content.
Assuntos
Astrócitos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Animais , Astrócitos/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Dendritos/metabolismo , Feminino , Frutose-Bifosfato Aldolase/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Gravidez , Ratos , Ratos Sprague-DawleyRESUMO
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1ß/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Assuntos
Astrócitos/citologia , Conexina 43/metabolismo , Conexinas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo , Regulação para CimaRESUMO
Introduction: Glioblastoma (GB) is the most common malignant brain tumor and is characterized by high invasiveness, poor prognosis, and limited therapeutic options. Silencing gene expression, through the use of small interfering RNA (siRNA), has been proposed as an alternative to conventional cancer therapy. Here, we evaluated the potential of CD73 as a new therapeutic target, since it is overexpressed in solid tumors and has emerged as a promising target to control GB progression.Methods: A cationic nanoemulsion (NE) as an intravenous siRNA-CD73 delivery system was developed and its effect on C6 glioma cell viability was determined.Results: The nanostructured system was effective in complexing oligonucleotides for delivery to target cells. In addition, we observed that the NE-siRNA-CD73 complex was effective in reducing CD73 protein levels and AMPase activity, which were related to decreased C6 glioma cell viability.Conclusions: These findings indicate the potential of siRNA-CD73-loaded cationic NE as a therapeutic alternative for glioma treatment.
Assuntos
5'-Nucleotidase/genética , Glioma/terapia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cátions/química , Linhagem Celular Tumoral , Células Cultivadas , Portadores de Fármacos/química , Emulsões/química , Glioma/genética , RNA Interferente Pequeno/genética , Terapêutica com RNAi , RatosRESUMO
Schizophrenia (SZ) is a multifactorial mental disorder, which has been associated with a number of environmental factors, such as hypoxia. Considering that numerous neural mechanisms depends on energetic supply (ATP synthesis), the maintenance of mitochondrial metabolism is essential to keep cellular balance and survival. Therefore, in the present work, we evaluated functional parameters related to mitochondrial function, namely calcium levels, mitochondrial membrane potential, redox homeostasis, high-energy compounds levels and oxygen consumption, in astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR) animals exposed both to chemical and gaseous hypoxia. We show that astrocytes after hypoxia presented depolarized mitochondria, disturbances in Ca2+ handling, destabilization in redox system and alterations in ATP, ADP, Pyruvate and Lactate levels, in addition to modification in NAD+/NADH ratio, and Nfe2l2 and Nrf1 expression. Interestingly, intrauterine hypoxia also induced augmentation in mitochondrial biogenesis and content. Altogether, our data suggest that hypoxia can induce mitochondrial deregulation and a decrease in energy metabolism in the most prevalent cell type in the brain, astrocytes. Since SHR are also considered an animal model of SZ, our results can likewise be related to their phenotypic alterations and, therefore, our work also allow an increase in the knowledge of this burdensome disorder.
Assuntos
Astrócitos/patologia , Hipóxia Celular , Hipóxia Fetal/complicações , Mitocôndrias/patologia , Esquizofrenia/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/patologia , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Hipóxia Fetal/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio , Gravidez , Cultura Primária de Células , Ratos , Ratos Endogâmicos SHR , Esquizofrenia/etiologiaRESUMO
BACKGROUND: In the developing cerebral cortex, Radial Glia (RG) multipotent neural stem cell, among other functions, differentiate into astrocytes and serve as a scaffold for blood vessel development. After some time, blood vessel Endothelial Cells (ECs) become associated with astrocytes to form the neurovascular Blood-Brain Barrier (BBB) unit. OBJECTIVE: Since little is known about the mechanisms underlying bidirectional RG-ECs interactions in both vascular development and astrocyte differentiation, this study investigated the impact of interactions between RG and ECs mediated by secreted factors on EC maturation and gliogenesis control. METHODS: First, we demonstrated that immature vasculature in the murine embryonic cerebral cortex physically interacts with Nestin positive RG neural stem cells in vivo. Isolated Microcapillary Brain Endothelial Cells (MBEC) treated with the conditioned medium from RG cultures (RG-CM) displayed decreased proliferation, reduction in the protein levels of the endothelial tip cell marker Delta-like 4 (Dll4), and decreased expression levels of the vascular permeability associated gene, plasmalemma vesicle-associated protein-1 (PLVAP1). These events were also accompanied by increased levels of the tight junction protein expression, zonula occludens-1 (ZO-1). RESULTS: Finally, we demonstrated that isolated RG cells cultures treated with MBEC conditioned medium promoted the differentiation of astrocytes in a Vascular Endothelial Growth Factor-A (VEGF-A) dependent manner. CONCLUSION: These results suggest that the bidirectional interaction between RG and ECs is essential to induce vascular maturation and astrocyte generation, which may be an essential cell-cell communication mechanism to promote BBB establishment.
Assuntos
Astrócitos/citologia , Barreira Hematoencefálica/citologia , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Células Cultivadas , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/fisiologiaRESUMO
Microglia originate from yolk sac-primitive macrophages and auto-proliferate into adulthood without replacement by bone marrow-derived circulating cells. In inflammation, stroke, aging, or infection, microglia have been shown to contribute to brain pathology in both deleterious and beneficial ways, which have been studied extensively. However, less is known about their role in the healthy adult brain. Astrocytes and oligodendrocytes are widely accepted to strongly contribute to the maintenance of brain homeostasis and to modulate neuronal function. On the other hand, contribution of microglia to cognition and behavior is only beginning to be understood. The ability to probe their function has become possible using microglial depletion assays and conditional mutants. Studies have shown that the absence of microglia results in cognitive and learning deficits in rodents during development, but this effect is less pronounced in adults. However, evidence suggests that microglia play a role in cognition and learning in adulthood and, at a cellular level, may modulate adult neurogenesis. This review presents the case for repositioning microglia as key contributors to the maintenance of homeostasis and cognitive processes in the healthy adult brain, in addition to their classical role as sentinels coordinating the neuroinflammatory response to tissue damage and disease.
Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Aprendizagem/fisiologia , Microglia/fisiologia , Adulto , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Humanos , Microglia/citologia , Oligodendroglia/citologia , Oligodendroglia/fisiologiaRESUMO
Although it has been shown that telomerase has neuroprotective effects, mainly as a result of its non-canonical functions in neuronal cells, its role with respect to glial cells remains unknown. There is growing evidence indicating that telomerase plays an important role with respect to inflammation, especially in the regulation of pro-inflammatory cytokine gene expression. The present study aimed to evaluate the role of telomerase in an astrocyte cell model treated with palmitic acid (PA) and tibolone. Cell death, reactive oxygen species production and interleukin-6 expression were evaluated under telomerase inhibition with the BIBR1532 compound in T98G cells treated with tibolone and PA, using fluorometry, flow cytometry, enzyme-linked immunosorbent assays and the quantitative polymerase chain reaction. The results obtained showed that telomerase protein was increased by PA after 36 hours, alone or in combination with tibolone, and that its activity was affected by PA. Telomerase inhibition reduced interleukin-6 expression and it interfered with the protective effects of tibolone on cell death. Moreover, tibolone increased Tyr707 phosphorylation in PA-treated cells. In the present study, we provide novel findings about the regulation of telomerase by PA and tibolone. Telomerase was involved in inflammation by PA and in protective effects of tibolone. Therefore, we conclude that telomerase could play a dual role in these cells.
Assuntos
Aminobenzoatos/farmacologia , Astrócitos/efeitos dos fármacos , Interleucina-6/genética , Naftalenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Norpregnenos/farmacologia , Ácido Palmítico/farmacologia , Telomerase/antagonistas & inibidores , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacosRESUMO
Neurogenesis in the substantia nigra (SN) has been a controversial issue. Here we report that neurogenesis can be induced in the adult rodent SN by transplantation of embryoid body cells (EBCs) derived from mouse embryonic stem cells. The detection of Sox2+ dividing (BrdU+) putative host neural precursor cells (NPCs) between 1 and 6â¯days post-transplantation (dpt) supported the neurogenic capacity of the adult SN. In agreement with the awakening of NPCs by EBCs, only host cells from implant-bearing SN were able to generate neurosphere-like aggregates in the presence of Egf and Fgf2. Later, at 15 dpt, a significant number of SN Dcx+ neuroblasts were detected. However, a continuous BrdU administration after transplantation showed that only a fraction (about 20-30%) of those host Dcx+ progeny derived from dividing cells and few BrdU+ cells, some of them NeuN+, survived up to 30 dpt. Unexpectedly, 25-30% of Dcx+ or Psa-Ncam+ cells at 15 dpt displayed astrocytic markers such as Gfap and S100b. Using a genetic lineage tracing strategy, we demonstrated that a large proportion of host Dcx+ and/or Tubb3+ neuroblasts originated from Gfap+ cells. Remarkably, new blood vessels formed in association with the neurogenic process that, when precluded, caused a reduction in neuroblast production. Accordingly, two proteins secreted by EBCs, Fgf2 and Vegf, were able to promote the emergence of Dcx+/Psa-Ncam+, Tubb3+ and NeuN+/BrdU+ cells in vivo in the absence of EBCs. We propose that the adult SN is a mostly silent neurogenic niche with the ability to generate new neurons by typical and atypical mechanisms.
Assuntos
Células-Tronco Embrionárias Murinas/transplante , Neurogênese/fisiologia , Neurônios/fisiologia , Substância Negra/fisiologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Proteína Duplacortina , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.
Assuntos
Angiotensina II/análogos & derivados , Cistinil Aminopeptidase/metabolismo , Melatonina/biossíntese , Glândula Pineal/metabolismo , Angiotensina II/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Masculino , Glândula Pineal/citologia , Glândula Pineal/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
Oxidative stress and mitochondrial dysfunction induced by metabolic insults are both hallmarks of various neurological disorders, whereby neuronal cells are severely affected by decreased glucose supply to the brain. Likely injured, astrocytes are important for neuronal homeostasis and therapeutic strategies should be directed towards improving astrocytic functions to improve brain's outcome. In the present study, we aimed to assess the actions of raloxifene, a selective estrogen receptor modulator in astrocytic cells under glucose deprivation. Our findings indicated that pretreatment with 1 µM raloxifene results in an increase in cell viability and attenuated nuclei fragmentation. Raloxifene's actions also rely on the reduction of oxidative stress and preservation of mitochondrial function in glucose-deprived astrocytic cells, suggesting the possible direct effects of this compound on mitochondria. In conclusion, our results demonstrate that raloxifene's protective actions might be mediated in part by astrocytes in the setting of a metabolic insult.
Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fármacos Neuroprotetores/farmacologia , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Astrócitos/citologia , Cardiolipinas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Neurons have limited intracellular energy stores but experience acute and unpredictable increases in energy demand. To better understand how these cells repeatedly transit from a resting to active state without undergoing metabolic stress, we monitored their early metabolic response to neurotransmission using ion-sensitive probes and FRET sensors in vitro and in vivo. A short theta burst triggered immediate Na+ entry, followed by a delayed stimulation of the Na+/K+ ATPase pump. Unexpectedly, cytosolic ATP and ADP levels were unperturbed across a wide range of physiological workloads, revealing strict flux coupling between the Na+ pump and mitochondria. Metabolic flux measurements revealed a "priming" phase of mitochondrial energization by pyruvate, whereas glucose consumption coincided with delayed Na+ pump stimulation. Experiments revealed that the Na+ pump plays a permissive role for mitochondrial ATP production and glycolysis. We conclude that neuronal energy homeostasis is not mediated by adenine nucleotides or by Ca2+, but by a mechanism commanded by the Na+ pump.
Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Astrócitos/citologia , Metabolismo Energético , Glucose/metabolismo , Glicólise , Homeostase , Camundongos Endogâmicos C57BL , Neurônios/citologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disease with no cure or treatment to stop disease progression. Because ALS represents an urgent unmet medical need, a significant number of therapeutics are being tested in preclinical and clinical studies. A recent publication in Stem Cell Research & Therapy by Izrael and colleagues reports about embryonic stem cell-derived astrocytes as a potential cell therapy for ALS. Such cells behave as highly trophic "young astrocytes", being able to delay disease onset and prolong survival when injected intrathechally in murine models of ALS overexpressing the SOD1G93A mutation. The safety and therapeutic potential of these cells are currently being evaluated in a clinical trial in ALS patients. This commentary discusses the mechanisms of action and potential therapeutic effects of these "young astrocytes" in ALS.
Assuntos
Esclerose Lateral Amiotrófica/terapia , Astrócitos/transplante , Terapia Baseada em Transplante de Células e Tecidos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Astrócitos/citologia , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios MotoresRESUMO
Sporadic Alzheimer's disease (SAD) is the most common form of dementia; therefore, there is an urgent need for a model that recapitulates the main pathologic hallmarks of this disease. The intracerebroventricular (icv) injection of streptozotocin (icv-STZ) in rats constitutes a promising model, and thus, icv-STZ rats develop insulin-resistant brain state and cognitive impairments. Even though a great piece of studies has hitherto described this system as a model for SAD, further behavioral and morphometric studies are still needed to fully characterize it. In this study, using Sprague Dawley rats, we evaluated short-term effects on behavior and hippocampus morphometry of the icv-STZ injection at two doses: 1 (STZ1) and 3 mg/kg (STZ3). We found that, following icv-STZ injection, STZ3 animals, but not STZ1, exhibited impairments in spatial reference learning and memory (Barnes maze test) and in recognition memory (object recognition test). Furthermore, the results from behavioral and morpho-histochemical data are compatible. STZ3 rats displayed Stratum Radiatum volume reduction and a decreased NeuN immunoreactivity (neuron loss) in hippocampal CA1 region, together with an increased immunoreactivity for microglial (Iba1) and astroglial (GFAP) markers (neuroinflammation). Sholl analysis revealed the vulnerability of hippocampal astrocytes to STZ in CA1 and CA3. Thus, both doses induced a reduction in process length and in the number of main processes, accompanied by a frank decrease in branching complexity. The present study provides important knowledge of this AD rat model. Overall, we found that the only high STZ dose induced severe and acute neurodegenerative lesions, associated with an inflammation process.