Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.890
Filtrar
1.
Commun Biol ; 7(1): 852, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997325

RESUMO

Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.


Assuntos
Astrócitos , Plasticidade Neuronal , Reversão de Aprendizagem , Animais , Astrócitos/fisiologia , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos , Reversão de Aprendizagem/fisiologia , Serina/metabolismo , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968101

RESUMO

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Resinas Acrílicas/química , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Matriz Extracelular/metabolismo , Estresse Mecânico
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904081

RESUMO

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Locus Cerúleo , Humanos , Feminino , Masculino , Locus Cerúleo/diagnóstico por imagem , Astrócitos/fisiologia , Idoso , Pessoa de Meia-Idade , Adulto , Idoso de 80 Anos ou mais , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuritos/fisiologia
4.
Biol Res ; 57(1): 39, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867288

RESUMO

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Assuntos
Astrócitos , Conexina 43 , Conexinas , Depressão Alastrante da Atividade Elétrica Cortical , Transmissão Sináptica , Animais , Astrócitos/fisiologia , Conexinas/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Conexina 43/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Cerebral , Neurônios/fisiologia , Hipocampo , Ratos Sprague-Dawley , Ratos , Potássio/metabolismo
5.
Front Endocrinol (Lausanne) ; 15: 1389589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887265

RESUMO

Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.


Assuntos
Astrócitos , Ingestão de Alimentos , Núcleos Parabraquiais , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Masculino , Feminino , Ratos , Ingestão de Alimentos/fisiologia , Núcleos Parabraquiais/fisiologia , Anorexia/metabolismo , Comportamento Alimentar/fisiologia , Ratos Sprague-Dawley , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
PLoS Comput Biol ; 20(5): e1012186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820533

RESUMO

Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.


Assuntos
Astrócitos , Biologia Computacional , Modelos Neurológicos , Rede Nervosa , Neurônios , Astrócitos/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologia , Animais , Humanos , Sinapses/fisiologia , Simulação por Computador , Plasticidade Neuronal/fisiologia , Encéfalo/fisiologia , Aprendizagem/fisiologia
8.
Int J Neural Syst ; 34(6): 2450028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706265

RESUMO

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.


Assuntos
Astrócitos , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Sinapses , Transmissão Sináptica , Sinapses/fisiologia , Astrócitos/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Fatores de Tempo , Humanos
9.
J Neurosci Res ; 102(5): e25356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773875

RESUMO

From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.


Assuntos
Astrócitos , Encéfalo , Matriz Extracelular , Astrócitos/fisiologia , Astrócitos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Humanos , Animais , Encéfalo/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo
10.
Sci Signal ; 17(838): eadq5728, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805584
11.
Glia ; 72(7): 1356-1370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38591270

RESUMO

Astrocytes throughout the central nervous system are heterogeneous in both structure and function. This diversity leads to tissue-specific specialization where morphology is adapted to the surrounding neuronal circuitry, as seen in Bergman glia of the cerebellum and Müller glia of the retina. Because morphology can be a differentiating factor for cellular classification, we recently developed a mouse where glial-fibrillary acidic protein (GFAP)-expressing cells stochastically label for full membranous morphology. Here we utilize this tool to investigate whether morphological and electrophysiological features separate types of mouse retinal astrocytes. In this work, we report on a novel glial population found in the inner plexiform layer and ganglion cell layer which expresses the canonical astrocyte markers GFAP, S100ß, connexin-43, Sox2 and Sox9. Apart from their retinal layer localization, these cells are unique in their radial distribution. They are notably absent from the mid-retina but are heavily concentrated near the optic nerve head, and to a lesser degree the peripheral retina. Additionally, their morphology is distinct from both nerve fiber layer astrocytes and Müller glia, appearing more similar to amacrine cells. Despite this structural similarity, these cells lack protein expression of common neuronal markers. Additionally, they do not exhibit action potentials, but rather resemble astrocytes and Müller glia in their small amplitude, graded depolarization to both light onset and offset. Their structure, protein expression, physiology, and intercellular connections suggest that these cells are astrocytic, displaced from their counterparts in the nerve fiber layer. As such, we refer to these cells as displaced retinal astrocytes.


Assuntos
Astrócitos , Camundongos Transgênicos , Retina , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Retina/citologia , Retina/metabolismo , Retina/fisiologia , Camundongos , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia
12.
Glia ; 72(8): 1418-1434, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591259

RESUMO

Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.


Assuntos
Astrócitos , Neurônios , Astrócitos/fisiologia , Astrócitos/metabolismo , Animais , Neurônios/fisiologia , Masculino , Cálcio/metabolismo , Convulsões/fisiopatologia , Epilepsia/fisiopatologia , Epilepsia/patologia , Cobre/metabolismo , Camundongos , Modelos Animais de Doenças , Citratos
13.
Brain Stimul ; 17(3): 620-632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688399

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has gained prominence recently. Clinical studies have explored tDCS as an adjunct to neurologic disease rehabilitation, with evidence suggesting its potential in modulating brain clearance mechanisms. The glymphatic system, a proposed brain waste clearance system, posits that cerebrospinal fluid-interstitial fluid (CSF-ISF) exchange aids in efficient metabolic waste removal. While some studies have linked tDCS to astrocytic inositol trisphosphate (IP3)/Ca2+ signaling, the impact of tDCS on CSF-ISF exchange dynamics remains unclear. HYPOTHESIS: tDCS influences the dynamics of CSF-ISF exchange through astrocytic IP3/Ca2+ signaling. METHODS: In this study, we administered tDCS (0.1 mA for 10 min) to C57BL/6N mice anesthetized with ketamine-xylazine (KX). The anode was positioned on the cranial bone above the cortex, and the cathode was inserted into the neck. Following tDCS, we directly assessed brain fluid dynamics by injecting biotinylated dextran amine (BDA) as a CSF tracer into the cisterna magna (CM). The brain was then extracted after either 30 or 60 min and fixed. After 24 h, the sectioned brain slices were stained with Alexa 594-conjugated streptavidin (SA) to visualize BDA using immunohistochemistry. We conducted Electroencephalography (EEG) recordings and aquaporin 4 (AQP4)/CD31 immunostaining to investigate the underlying mechanisms of tDCS. Additionally, we monitored the efflux of Evans blue, injected into the cisterna magna, using cervical lymph node imaging. Some experiments were subsequently repeated with inositol trisphosphate receptor type 2 (IP3R2) knockout (KO) mice. RESULTS: Post-tDCS, we observed an increased CSF tracer influx, indicating a modulation of CSF-ISF exchange by tDCS. Additionally, tDCS appeared to enhance the brain's metabolic waste efflux. EEG recordings showed an increase in delta wave post-tDCS. But no significant change in AQP4 expression was detected 30 min post-tDCS. Besides, we found no alteration in CSF-ISF exchange and delta wave activity in IP3R2 KO mice after tDCS. CONCLUSION: Our findings suggest that tDCS augments the glymphatic system's influx and efflux. Through astrocytic IP3/Ca2+ signaling, tDCS was found to modify the delta wave, which correlates positively with brain clearance. This study underscores the potential of tDCS in modulating brain metabolic waste clearance.


Assuntos
Encéfalo , Líquido Extracelular , Camundongos Endogâmicos C57BL , Estimulação Transcraniana por Corrente Contínua , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Camundongos , Encéfalo/fisiologia , Encéfalo/metabolismo , Líquido Extracelular/fisiologia , Líquido Extracelular/metabolismo , Masculino , Sistema Glinfático/fisiologia , Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/metabolismo , Astrócitos/fisiologia , Astrócitos/metabolismo
14.
Medicina (Kaunas) ; 60(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674304

RESUMO

Background and Objectives. Neurogenesis is an integral process in post-stroke recovery, involving the recruitment of proliferating neuroblasts from neurogenic niches of the mammal brain. However, the role of neurogenesis in the long-term restoration following ischemic stroke is fragmented. Post-stroke motor dysfunction includes challenges in the proper, coordinated use of hands and is present in roughly two-thirds of human patients. In this study, we investigated chronic behavioral and biochemical alterations after transient cerebral ischemia in adult male mice. Materials and Methods: Twelve-week-old C57BL/6N male mice were used, and fMCAo lasting 60 min was induced. At multiple timepoints after fMCAo induction, a single pellet reaching task was performed. Six months after the procedure, we immunohistochemically determined the number of proliferating neuroblasts (BrdU and DCX-positive) and the number of differentiated astrocytes (GFAP-positive) in both brain hemispheres. Results: The reaching ability of fMCAo mice was impaired from one month to six months after the induction of ischemia. Neuroblast proliferation was increased in the ipsilateral SVZ, whereas GFAP+ cell count was elevated in the hippocampal DG of both hemispheres of the fMCAo group mice. Conclusions: Our current report demonstrates the long-term effects of transient cerebral ischemia on mice functional parameters and neurogenesis progression. Our data demonstrate that transient cerebral ischemia promotes a long-lasting regenerative response in the ipsilateral brain hemisphere, specifically in the neurogenic SVZ and DG regions.


Assuntos
Astrócitos , Proteína Duplacortina , Camundongos Endogâmicos C57BL , Destreza Motora , Neurogênese , Animais , Neurogênese/fisiologia , Camundongos , Masculino , Astrócitos/fisiologia , Destreza Motora/fisiologia , Modelos Animais de Doenças , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/complicações
15.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607045

RESUMO

In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Sistema Nervoso Central , Microglia/fisiologia , Astrócitos/fisiologia
16.
BMC Biol ; 22(1): 75, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566045

RESUMO

BACKGROUND: Trans-differentiation of human-induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling and in vitro assay development. Recent single-cell interrogation of Ngn2-induced neurons, however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC-derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. RESULTS: Here, we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days), and the impact of hiPSC-N/hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: https://nemoanalytics.org/p?l=DasEtAlNGN2&g=NES . CONCLUSIONS: While overall we support the use of the investigated cellular models for the study of neuropsychiatric disease, we also identify important limitations. We hope that this work will contribute to understanding and optimizing cellular modeling for complex brain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura , Astrócitos/fisiologia , Neurônios/fisiologia , Diferenciação Celular , Perfilação da Expressão Gênica
17.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570661

RESUMO

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Assuntos
Astrócitos , Sinalização do Cálcio , Hipocampo , Locus Cerúleo , Animais , Locus Cerúleo/fisiologia , Locus Cerúleo/citologia , Astrócitos/fisiologia , Camundongos , Hipocampo/fisiologia , Hipocampo/citologia , Masculino , Sinalização do Cálcio/fisiologia , Feminino , Optogenética , Camundongos Transgênicos , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Cálcio/metabolismo
19.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615721

RESUMO

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microeletrodos , Neurônios , Humanos , Neurônios/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais de Ação/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Astrócitos/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Bicuculina/farmacologia , Rede Nervosa/fisiologia
20.
Behav Brain Res ; 468: 115017, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679145

RESUMO

Growing evidence indicates a critical role of astrocytes in learning and memory. However, little is known about the role of basolateral amygdala complex (BLA-C) astrocytes in contextual fear conditioning (CFC), a paradigm relevant to understand and generate treatments for fear- and anxiety-related disorders. To get insights on the involvement of BLA-C astrocytes in fear memory, fluorocitrate (FLC), a reversible astroglial metabolic inhibitor, was applied at critical moments of the memory processing in order to target the acquisition, consolidation, retrieval and reconsolidation process of the fear memory. Adult Wistar male rats were bilaterally cannulated in BLA-C. Ten days later they were infused with different doses of FLC (0.5 or 1 nmol/0.5 µl) or saline before or after CFC and before or after retrieval. FLC impaired fear memory expression when administered before and shortly after CFC, but not one hour later. Infusion of FLC prior and after retrieval did not affect the memory. Our findings suggest that BLA-C astrocytes are critically involved in the acquisition/early consolidation of fear memory but not in the retrieval and reconsolidation. Furthermore, the extinction process was presumably not affected (considering that peri-retrieval administration could also affect this process).


Assuntos
Astrócitos , Complexo Nuclear Basolateral da Amígdala , Medo , Memória , Ratos Wistar , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Masculino , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Ratos , Memória/fisiologia , Memória/efeitos dos fármacos , Citratos/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...