Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.160
Filtrar
1.
Sci Rep ; 14(1): 12882, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839796

RESUMO

SARS-CoV2 infection results in a range of disease severities, but the underlying differential pathogenesis is still not completely understood. At presentation it remains difficult to estimate and predict severity, in particular, identify individuals at greatest risk of progression towards the most severe disease-states. Here we used advanced models with circulating serum analytes as variables in combination with daily assessment of disease severity using the SCODA-score, not only at single time points but also during the course of disease, to correlate analyte levels and disease severity. We identified a remarkably strong pro-inflammatory cytokine/chemokine profile with high levels for sCD163, CCL20, HGF, CHintinase3like1 and Pentraxin3 in serum which correlated with COVID-19 disease severity and overall outcome. Although precise analyte levels differed, resulting biomarker profiles were highly similar at early and late disease stages, and even during convalescence similar biomarkers were elevated and further included CXCL3, CXCL6 and Osteopontin. Taken together, strong pro-inflammatory marker profiles were identified in patients with COVID-19 disease which correlated with overall outcome and disease severity.


Assuntos
Biomarcadores , COVID-19 , Ativação de Macrófagos , Índice de Gravidade de Doença , COVID-19/sangue , COVID-19/imunologia , Humanos , Biomarcadores/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Citocinas/sangue , Síndrome da Liberação de Citocina/sangue , Adulto , Idoso , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/análise , Proteína C-Reativa
2.
Front Immunol ; 15: 1361606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846937

RESUMO

Introduction: Pathological changes in the articular cartilage (AC) and synovium are major manifestations of osteoarthritis (OA) and are strongly associated with pain and functional limitations. Exosome-derived microRNAs (miRNAs) are crucial regulatory factors in intercellular communication and can influence the progression of OA by participating in the degradation of chondrocytes and the phenotypic transformation in the polarization of synovial macrophages. However, the specific relationships and pathways of action of exosomal miRNAs in the pathological progression of OA in both cartilage and synovium remain unclear. Methods: This study evaluates the effects of fibroblast-like synoviocyte (FLS)-derived exosomes (FLS-Exos), influenced by miR-146a, on AC degradation and synovial macrophage polarization. We investigated the targeted relationship between miR-146a and TRAF6, both in vivo and in vitro, along with the involvement of the NF-κB signaling pathway. Results: The expression of miR-146a in the synovial exosomes of OA rats was significantly higher than in healthy rats. In vitro, the upregulation of miR-146a reduced chondrocyte apoptosis, whereas its downregulation had the opposite effect. In vivo, exosomes derived from miR-146a-overexpressing FLSs (miR-146a-FLS-Exos) reduced AC injury and chondrocyte apoptosis in OA. Furthermore, synovial proliferation was reduced, and the polarization of synovial macrophages shifted from M1 to M2. Mechanistically, the expression of TRAF6 was inhibited by targeting miR-146a, thereby modulating the Toll-like receptor 4/TRAF6/NF-κB pathway in the innate immune response. Discussion: These findings suggest that miR-146a, mediated through FLS-Exos, may alleviate OA progression by modulating cartilage degradation and macrophage polarization, implicating the NF-κB pathway in the innate immune response. These insights highlight the therapeutic potential of miR-146a as a protective agent in OA, underscoring the importance of exosomal miRNAs in the pathogenesis and potential treatment of the disease.


Assuntos
Exossomos , Macrófagos , MicroRNAs , Osteoartrite , Sinoviócitos , Fator 6 Associado a Receptor de TNF , MicroRNAs/genética , Animais , Exossomos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/imunologia , Ratos , Macrófagos/imunologia , Macrófagos/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Masculino , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Células Cultivadas , Apoptose , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ativação de Macrófagos
3.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833010

RESUMO

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Assuntos
Akkermansia , Hepcidinas , Macrófagos , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Células Hep G2 , Células CACO-2 , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Células THP-1 , Ferro/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ativação de Macrófagos , Microbioma Gastrointestinal
4.
Sci Rep ; 14(1): 12721, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830871

RESUMO

Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.


Assuntos
Macrófagos , Poliésteres , Propriedades de Superfície , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Bovinos , Poliésteres/química , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Durapatita/química , Citocinas/metabolismo , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fêmur , Colágeno Tipo I/metabolismo
5.
PLoS One ; 19(6): e0303434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865377

RESUMO

The modulation of macrophage polarization is a promising strategy for maintaining homeostasis and improving innate and adaptive immunity. Low-dose ionizing radiation has been implicated in macrophage immunomodulatory responses. However, studies on the relationship between exosomes and regulation of macrophage polarization induced by ionizing radiation are limited. Therefore, this study investigated the alterations in macrophages and exosomes induced by gamma irradiation and elucidated the underlying mechanisms. We used the mouse macrophage cell line RAW 264.7 to generate macrophages and performed western blot, quantitative reverse transcription-PCR, and gene ontology analyses to elucidate the molecular profiles of macrophage-derived exosomes under varying treatment conditions, including 10 Gy gamma irradiation. Exosomes isolated from gamma-irradiated M1 macrophages exhibited an enhanced M1 phenotype. Irradiation induced the activation of NF-κB and NLRP3 signaling in M1 macrophages, thereby promoting the expression of pro-inflammatory cytokines. Cytokine expression was also upregulated in gamma-irradiated M1 macrophage-released exosomes. Therefore, gamma irradiation has a remarkable effect on the immunomodulatory mechanisms and cytokine profiles of gamma-irradiated M1 macrophage-derived exosomes, and represents a potential immunotherapeutic modality.


Assuntos
Citocinas , Exossomos , Raios gama , Macrófagos , Animais , Exossomos/metabolismo , Exossomos/efeitos da radiação , Camundongos , Macrófagos/efeitos da radiação , Macrófagos/imunologia , Macrófagos/metabolismo , Células RAW 264.7 , Citocinas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ativação de Macrófagos/efeitos da radiação
6.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867293

RESUMO

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Assuntos
Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Proteína Quinase C beta , Transdução de Sinais , Animais , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimologia , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Células Cultivadas , Fenótipo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ativação de Macrófagos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Função Ventricular Esquerda , Fosforilação
7.
Front Immunol ; 15: 1401626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868779

RESUMO

Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.


Assuntos
Proteínas de Peixes , Macrófagos , Necroptose , Perciformes , Animais , Perciformes/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Necroptose/imunologia , Filogenia , Ativação de Macrófagos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Aciltransferases/genética , Aciltransferases/imunologia , Pseudomonas/fisiologia , Citocinas/metabolismo
8.
Cancer Med ; 13(11): e7387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864479

RESUMO

BACKGROUND: Promising outcomes have been observed in multiple myeloma (MM) with the use of immunotherapies, specifically chimeric antigen receptor T (CAR-T) cell therapy. However, a portion of MM patients do not respond to CAR-T therapy, and the reasons for this lack of response remain unclear. The objective of this study was to investigate the impact of miR-34a on the immunosuppressive polarization of macrophages obtained from MM patients. METHODS: The levels of miR-34a and TLR9 (Toll-like receptor 9) were examined in macrophages obtained from both healthy individuals and patients with MM. ELISA was employed to investigate the cytokine profiles of the macrophage samples. Co-culture experiments were conducted to evaluate the immunomodulatory impact of MM-associated macrophages on CAR-T cells. RESULTS: There was an observed suppressed activation of macrophages and CD4+ T lymphocytes in the blood samples of MM patients. Overexpression of miR-34a in MM-associated macrophages dampened the TLR9 expression and impaired the inflammatory polarization. In both the co-culture system and an animal model, MM-associated macrophages suppressed the activity and tumoricidal effect of CAR-T cells in a miR-34a-dependent manner. CONCLUSION: The findings imply that targeting the macrophage miR-34a/TLR9 axis could potentially alleviate the immunosuppression associated with CAR-T therapy in MM patients.


Assuntos
MicroRNAs , Mieloma Múltiplo , Transdução de Sinais , Receptor Toll-Like 9 , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , MicroRNAs/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Humanos , Animais , Camundongos , Técnicas de Cocultura , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia Adotiva/métodos , Masculino , Feminino , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Linhagem Celular Tumoral
9.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805907

RESUMO

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Assuntos
Arginase , Hipersensibilidade Alimentar , Macrófagos , Camundongos Endogâmicos BALB C , Palaemonidae , Tropomiosina , Animais , Tropomiosina/imunologia , Hipersensibilidade Alimentar/imunologia , Camundongos , Macrófagos/imunologia , Arginase/metabolismo , Palaemonidae/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Lectinas de Ligação a Manose/metabolismo , Feminino , Receptor de Manose , Jejuno/imunologia , Jejuno/patologia , Células Cultivadas , Histamina/metabolismo , Ativação de Macrófagos
10.
Cytokine ; 179: 156620, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701735

RESUMO

PURPOSE: The emergence of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, but these drugs can also cause severe immune-related adverse effects (irAEs), including myocarditis. Researchers have become interested in exploring ways to mitigate this side effect, and one promising avenue is the use of baricitinib, a Janus kinase inhibitor known to have anti-inflammatory properties. This study aimed to examine the potential mechanism by which baricitinib in ICIs-related myocarditis. METHODS: To establish an ICIs-related myocarditis model, BALB/c mice were administered murine cardiac troponin I (cTnI) peptide and anti-mouse programmed death 1 (PD-1) antibodies. Subsequently, baricitinib was administered to the mice via intragastric administration. Echocardiography, HE staining, and Masson staining were performed to evaluate myocardial functions, inflammation, and fibrosis. Immunofluorescence was used to detect macrophages in the cardiac tissue of the mice.In vitro experiments utilized raw264.7 cells to induce macrophage polarization using anti-PD-1 antibodies. Different concentrations of baricitinib were applied to assess cell viability, and the release of pro-inflammatory cytokines was measured. The activation of the JAK1/STAT3 signaling pathway was evaluated through western blot analysis. RESULTS: Baricitinib demonstrated its ability to improve cardiac function and reduce cardiac inflammation, as well as fibrosis induced by ICIs. Mechanistically, baricitinib treatment promoted the polarization of macrophages towards the M2 phenotype. In vitro and in vivo experiments showed that anti-PD-1 promoted the release of inflammatory factors. However, treatment with baricitinib significantly inhibited the phosphorylation of JAK1 and STAT3. Additionally, the use of RO8191 reversed the effects of baricitinib, further confirming our findings. CONCLUSION: Baricitinib demonstrated its potential as a protective agent against ICIs-related myocarditis by modulating macrophage polarization. These findings provide a solid theoretical foundation for the development of future treatments for ICIs-related myocarditis.


Assuntos
Azetidinas , Janus Quinase 1 , Macrófagos , Camundongos Endogâmicos BALB C , Miocardite , Purinas , Pirazóis , Fator de Transcrição STAT3 , Sulfonamidas , Animais , Masculino , Camundongos , Azetidinas/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Janus Quinase 1/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miocardite/induzido quimicamente , Miocardite/tratamento farmacológico , Miocardite/patologia , Miocardite/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Troponina I/metabolismo
11.
Anticancer Res ; 44(6): 2437-2444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821624

RESUMO

BACKGROUND/AIM: Non-invasive physical plasma (NIPP) has shown promise in the treatment of cancer. However, conflicting results have been reported regarding the effect of NIPP on macrophage polarization. As tumor-associated macrophages (TAMs) are essential in the regulation of cancer development, this study aimed to determine the role of NIPP treatment in macrophage polarization and tumor-microenvironment (TME) remodeling. MATERIALS AND METHODS: A portable NIPP device, Plasma Care (Terraplasma Medical, Garching, Germany), was employed as the source of NIPP. The human monocytic cell line THP-1 was adopted as the cell model for macrophage differentiation and polarization. The effects of NIPP treatment on temperature, pH value, and oxidative stress induction of the culture medium were examined to validate the feasibility of applying the NIPP device in subsequent cell treatment. The changes in morphology, viability, and proliferation of THP-1 cells after NIPP treatment were determined. The expression of M1/M2 macrophage markers was examined by real-time quantitative polymerase chain reaction. RESULTS: No significant changes were observed in temperature and pH value after NIPP treatment, while the formation of hydrogen peroxide was promoted in a time-dependent manner. Cell morphology, viability, and proliferation were not affected by up to 6 minutes of NIPP treatment. In monocytes, 6 minutes of NIPP treatment significantly increased the expression of M1 markers (TNF-α and IL-6) and suppressed the M2 marker (CD206), findings which were consistent in the monocyte-derived macrophages. Furthermore, NIPP treatment also significantly promoted M1 polarization in the monocyte-derived macrophages induced by phorbol 12-myristate 13-acetate. CONCLUSION: NIPP is a safe and robust oxidative stress inducer and showed potential in TAM regulation by promoting M1 macrophage polarization.


Assuntos
Macrófagos , Gases em Plasma , Microambiente Tumoral , Humanos , Gases em Plasma/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Células THP-1 , Estresse Oxidativo , Diferenciação Celular , Proliferação de Células , Ativação de Macrófagos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia
12.
Methods ; 227: 1-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703879

RESUMO

Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.


Assuntos
Inflamação , Ativação de Macrófagos , Macrófagos , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Ativação de Macrófagos/genética , Inflamação/genética , Inflamação/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Regulação da Expressão Gênica , Citocinas/metabolismo , Citocinas/genética
13.
Arthritis Res Ther ; 26(1): 101, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745331

RESUMO

BACKGROUND: The purpose of this study was to investigate the role of macrophage polarization in the pathogenesis of primary Sjogren's syndrome (pSS). METHODS: Peripheral venous blood samples were collected from 30 patients with pSS and 30 healthy controls. Minor salivary gland samples were abtainted from 10 of these patients and 10 non-pSS controls whose minor salivary gland didn't fulfill the classification criteria for pSS. Enzyme-linked immuno sorbent assay was used to examine the serum concentration of M1/M2 macrophage related cytokines (TNF-a, IL-6, IL-23, IL-4, IL-10 and TGF-ß). Flow cytometry was used to examine the numbers of CD86+ M1 macrophages and CD206+ M2 macrophages in peripheral blood mononuclear cells (PBMCs). Immunofluorescence was used to test the infiltration of macrophages in minor salivary glands. RESULTS: This study observed a significant increase in pSS patients both in the numbers of M1 macrophages in peripheral blood and serum levels of M1-related pro-inflammatory cytokines (IL-6, IL-23 and TNF-α). Conversely, M2 macrophages were downregulated in the peripheral blood of pSS patients. Similarly, in the minor salivary glands of pSS patients, the expression of M1 macrophages was increased, and that of M2 macrophages was decreased. Furthermore, a significantly positive correlation was found between the proportions of M1 macrophages in PBMCs and serum levels of IgG and RF. CONCLUSIONS: This study reveals the presence of an significant imbalance in M1/M2 macrophages in pSS patients. The M1 polarization of macrophages may play an central role in the pathogenesis of pSS.


Assuntos
Citocinas , Macrófagos , Síndrome de Sjogren , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/sangue , Síndrome de Sjogren/patologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/metabolismo , Masculino , Adulto , Citometria de Fluxo , Idoso , Polaridade Celular , Ensaio de Imunoadsorção Enzimática , Ativação de Macrófagos/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
14.
Acta Physiol (Oxf) ; 240(7): e14159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767438

RESUMO

AIM: Ferroptosis is a novel type of programmed cell death that performs a critical function in diabetic nephropathy (DN). Augmenter of liver regeneration (ALR) exists in the inner membrane of mitochondria, and inhibits inflammation, apoptosis, and oxidative stress in acute kidney injury; however, its role in DN remains unexplored. Here, we aimed to identify the role of ALR in ferroptosis induction and macrophage activation in DN. METHODS: The expression of ALR was examined in DN patients, db/db DN mice, and HK-2 cells treated with high glucose (HG). The effects of ALR on ferroptosis and macrophage activation were investigated with ALR conditional knockout, lentivirus transfection, transmission electron microscopy, qRT-PCR and western blotting assay. Mass spectrometry and rescue experiments were conducted to determine the mechanism of ALR. RESULTS: ALR expression was reduced in the kidney tissues of DN patients and mice, serum of DN patients, and HG-HK-2 cells. Moreover, the inhibition of ALR promoted ferroptosis, macrophage activation, and DN progression. Mechanistically, ALR can directly bind to carnitine palmitoyltransferase-1A (CPT1A), the key rate-limiting enzyme of fatty acid oxidation (FAO), and inhibit the expression of CPT1A to regulate lipid metabolism involving FAO and lipid droplet-mitochondrial coupling in DN. CONCLUSION: Taken together, our findings revealed a crucial protective role of ALR in ferroptosis induction and macrophage activation in DN and identified it as an alternative diagnostic marker and therapeutic target for DN.


Assuntos
Carnitina O-Palmitoiltransferase , Nefropatias Diabéticas , Ferroptose , Metabolismo dos Lipídeos , Ativação de Macrófagos , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Camundongos , Metabolismo dos Lipídeos/fisiologia , Ferroptose/fisiologia , Humanos , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
15.
Front Immunol ; 15: 1394108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799455

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.


Assuntos
Artrite Reumatoide , Fibroblastos , Ativação de Macrófagos , Macrófagos , Transdução de Sinais , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fibroblastos/metabolismo , Fibroblastos/imunologia , Animais , Ativação de Macrófagos/imunologia , Comunicação Celular/imunologia , Reprogramação Metabólica
16.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792101

RESUMO

Chemokines, also known as chemotactic cytokines, stimulate the migration of immune cells. These molecules play a key role in the pathogenesis of inflammation leading to atherosclerosis, neurodegenerative disorders, rheumatoid arthritis, insulin-resistant diabetes, and cancer. Moreover, they take part in inflammatory bowel disease (IBD). The main objective of our research was to determine the activity of methyl-derivatives of flavanone, namely, 2'-methylflavanone (5B), 3'-methylflavanone (6B), 4'-methylflavanone (7B), and 6-methylflavanone (8B), on the releasing of selected cytokines by RAW264.7 macrophages activated by LPS. We determined the concentration of chemokines belonging to the CC chemokine family, namely, MCP-1, MIP-1ß, RANTES, and eotaxin, using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. Among the tested compounds, only 5B and 6B had the strongest effect on inhibiting the examined chemokines' release by macrophages. Therefore, 5B and 6B appear to be potentially useful in the prevention of diseases associated with the inflammatory process.


Assuntos
Quimiocina CCL11 , Quimiocina CCL2 , Quimiocina CCL5 , Flavanonas , Macrófagos , Animais , Camundongos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Flavanonas/farmacologia , Flavanonas/química , Quimiocina CCL11/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CCL4/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos
17.
PLoS One ; 19(5): e0303875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776331

RESUMO

BACKGROUND: It is amply demonstrated that cigarette smoke (CS) has a high impact on lung tumor progression worsening lung cancer patient prognosis and response to therapies. Alteration of immune cell types and functions in smokers' lungs have been strictly related with smoke detrimental effects. However, the role of CS in dictating an inflammatory or immunosuppressive lung microenvironment still needs to be elucidated. Here, we investigated the effect of in vitro exposure to cigarette smoke extract (CSE) focusing on macrophages. METHODS: Immortalized murine macrophages RAW 264.7 cells were cultured in the presence of CS extract and their polarization has been assessed by Real-time PCR and cytofluorimetric analysis, viability has been assessed by SRB assay and 3D-cultures and activation by exposure to Poly(I:C). Moreover, interaction with Lewis lung carcinoma (LLC1) murine cell models in the presence of CS extract were analyzed by confocal microscopy. RESULTS: Obtained results indicate that CS induces macrophages polarization towards the M2 phenotype and M2-phenotype macrophages are resistant to the CS toxic activity. Moreover, CS impairs TLR3-mediated M2-M1 phenotype shift thus contributing to the M2 enrichment in lung smokers. CONCLUSIONS: These findings indicate that, in lung cancer microenvironment of smokers, CS can contribute to the M2-phenotype macrophages prevalence by different mechanisms, ultimately, driving an anti-inflammatory, likely immunosuppressive, microenvironment in lung cancer smokers.


Assuntos
Neoplasias Pulmonares , Macrófagos , Microambiente Tumoral , Animais , Camundongos , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Fumaça/efeitos adversos , Polaridade Celular/efeitos dos fármacos , Humanos , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/imunologia
18.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762489

RESUMO

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Assuntos
COVID-19 , Células Endoteliais , Pulmão , Ativação de Macrófagos , SARS-CoV-2 , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/imunologia , SARS-CoV-2/fisiologia , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Camundongos Endogâmicos C57BL , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Camundongos Knockout , Proteínas da Matriz Extracelular
19.
Mol Med ; 30(1): 72, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822247

RESUMO

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Assuntos
Bleomicina , DNA Glicosilases , Modelos Animais de Doenças , Macrófagos , Mitofagia , Proteínas Quinases , Fibrose Pulmonar , Animais , Mitofagia/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Camundongos , Macrófagos/metabolismo , Proteínas Quinases/metabolismo , Bleomicina/efeitos adversos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ativação de Macrófagos , Humanos , Quinazolinonas
20.
Mol Syst Biol ; 20(6): 626-650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724853

RESUMO

More than 500 kinases are implicated in the control of most cellular process in mammals, and deregulation of their activity is linked to cancer and inflammatory disorders. 80 clinical kinase inhibitors (CKIs) have been approved for clinical use and hundreds are in various stages of development. However, CKIs inhibit other kinases in addition to the intended target(s), causing both enhanced clinical effects and undesired side effects that are only partially predictable based on in vitro selectivity profiling. Here, we report an integrative approach grounded on the use of chromatin modifications as unbiased, information-rich readouts of the functional effects of CKIs on macrophage activation. This approach exceeded the performance of transcriptome-based approaches and allowed us to identify similarities and differences among CKIs with identical intended targets, to recognize novel CKI specificities and to pinpoint CKIs that may be repurposed to control inflammation, thus supporting the utility of this strategy to improve selection and use of CKIs in clinical settings.


Assuntos
Epigenoma , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Humanos , Animais , Camundongos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...