Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.289
Filtrar
1.
Environ Monit Assess ; 196(8): 698, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963549

RESUMO

Air pollution is affected by the atmospheric dynamics. This study aims to determine that air pollution concentration values in Istanbul increased significantly and reached peak values due to atmospheric blocking between the 30th of December 2022 and the 5th of January 2023. In this study, hourly pollutant data was obtained from 16 air quality monitoring stations (AQMS), the exact reanalysis data was extracted from ERA5 database, and inversion levels and meteorological and synoptic analyses were used to determine the effects of atmospheric blocking on air pollution. Also, cloud base heights and vertical visibility measurements were taken with a ceilometer. Statistical calculations and data visualizations were performed using the R and Grads program. Omega-type blocking, which started in Istanbul on December 30, 2022, had a significant impact on the 1st and 2nd of January 2023, and PM10 and PM2.5 concentration values reached their peak values at 572.8 and 254.20 µg/m3, respectively. In addition, it was found that the average concentration values in the examined period in almost all stations were higher than the averages for January and February. As a result, air quality in Istanbul was determined as "poor" between these calendar dates. It was found that the blocking did not affect the ozone (µg/m3) concentration. It was also found that the concentrations of particulate matter (PM) 10 µm or less in diameter (PM10) and PM 2.5 µm or less in diameter (PM2.5) were increased by the blocking effect in the Istanbul area. Finally, according to the data obtained using the ceilometer, cloud base heights decreased to 30 m and vertical visibility to 10 m.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Atmosfera , Monitoramento Ambiental , Ozônio , Material Particulado , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Ozônio/análise , Atmosfera/química , Turquia , Estações do Ano
2.
Sci Rep ; 14(1): 15574, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971867

RESUMO

The latest Triassic was characterised by protracted biotic extinctions concluding in the End-Triassic Extinction (~ 200 Ma) and a global carbon cycle perturbation. The onset of declining diversity is closely related to reducing conditions that spread globally from upper Sevatian (uppermost Norian) to across the Norian-Rhaetian boundary, likely triggered by unusually high volcanic activity. We correlate significant organic carbon cycle perturbations to an increase of CO2 in the ocean-atmosphere system, likely outgassed by the Angayucham igneous province, the onset of which is indicated by the initiation of a rapid decline in 87Sr/86Sr and 188Os/187Os seawater values. A possible causal mechanism involves elevated CO2 levels causing global warming and accelerating chemical weathering, which increased nutrient discharge to the oceans and greatly increased biological productivity. Higher export production and oxidation of organic matter led to a global O2 decrease in marine water across the Norian/Rhaetian boundary (NRB). Biotic consequences of dysoxia/anoxia include worldwide extinctions in some fossil groups, such as bivalves, ammonoids, conodonts, radiolarians.


Assuntos
Fósseis , Oceanos e Mares , Água do Mar , Água do Mar/química , Extinção Biológica , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Oxigênio/metabolismo , Atmosfera/química , Animais
3.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978457

RESUMO

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Assuntos
Florestas , Isótopos de Nitrogênio , Nitrogênio , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Isótopos de Nitrogênio/análise , Atmosfera/química , Sequestro de Carbono , Árvores/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química
4.
Environ Sci Technol ; 58(28): 12585-12597, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38956968

RESUMO

Elevated levels of atmospheric molecular chlorine (Cl2) have been observed during the daytime in recent field studies in China but could not be explained by the current chlorine chemistry mechanisms in models. Here, we propose a Cl2 formation mechanism initiated by aerosol iron photochemistry to explain daytime Cl2 formation. We implement this mechanism into the GEOS-Chem chemical transport model and investigate its impacts on the atmospheric composition in wintertime North China where high levels of Cl2 as well as aerosol chloride and iron were observed. The new mechanism accounts for more than 90% of surface air Cl2 production in North China and consequently increases the surface air Cl2 abundances by an order of magnitude, improving the model's agreement with observed Cl2. The presence of high Cl2 significantly alters the oxidative capacity of the atmosphere, with a factor of 20-40 increase in the chlorine radical concentration and a 20-40% increase in the hydroxyl radical concentration in regions with high aerosol chloride and iron loadings. This results in an increase in surface air ozone by about 10%. This new Cl2 formation mechanism will improve the model simulation capability for reactive chlorine abundances in the regions with high emissions of chlorine and iron.


Assuntos
Aerossóis , Atmosfera , Cloro , Ferro , Oxirredução , Cloro/química , China , Ferro/química , Atmosfera/química , Poluentes Atmosféricos/química , Fotoquímica
5.
Environ Sci Technol ; 58(28): 12554-12562, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959497

RESUMO

Dissecting the photochemical reactivity of metal ions is a significant contribution to understanding secondary pollutant formation, as they have a role to be reckoned with atmospheric chemistry. However, their photochemical reactivity has received limited attention within the active nitrogen cycle, particularly at the gas-solid interface. In this study, we delve into the contribution of magnesium ion (Mg2+) and ferric ion (Fe3+) to nitrate decomposition on the surface of photoactive mineral dust. Under simulated sunlight irradiation, the observed NOX production rate differs by an order of magnitude in the presence of Mg2+ (6.02 × 10-10 mol s-1) and Fe3+ (2.07 × 10-11 mol s-1). The markedly decreased fluorescence lifetime induced by Mg2+ and the change in the valence of Fe3+ revealed that Mg2+ and Fe3+ significantly affect the concentration of nitrate decomposition products by distinct photochemical reactivity with photogenerated electrons. Mg2+ promotes NOX production by accelerating charge transfer, while Fe3+ hinders nitrate decomposition by engaging in a redox cyclic reaction with Fe2+ to consume photogenerated carriers continuously. Furthermore, when Fe3+ coexists with other metal ions (e.g., Mg2+, Ca2+, Na+, and K+) and surpasses a proportion of approximately 12%, the photochemical reactivity of Fe3+ tends to be dominant in depleting photogenerated electrons and suppressing nitrate decomposition. Conversely, below this threshold, the released NOX concentration increases sharply as the proportion of Fe3+ decreases. This research offers valuable insights into the role of metal ions in nitrate transformation and the generation of reactive nitrogen species, contributing to a deep understanding of atmospheric photochemical reactions.


Assuntos
Metais , Nitratos , Nitratos/química , Metais/química , Minerais/química , Poeira , Atmosfera/química , Íons , Processos Fotoquímicos
6.
Radiat Prot Dosimetry ; 200(11-12): 1003-1006, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016483

RESUMO

The Fast Fourier Transform (FFT) analysis of the activity concentration of radon and selected meteorological parameters was carried out at Department of Physics, Bangalore University, Bengaluru (12056'44"N, 77030'25″E, 840 m above MSL). All of the measured parameters, with the exception of pressure, showed a clear diurnal trend, which can be explained by the presence of typical atmospheric processes such as temperature inversion in the morning and greater vertical mixing in the afternoon. Radon's time series has a latent memory of sub-diurnal cycles, as shown via FFT analysis. The monthly average radon has higher levels of activity during winter months compared with monsoon and summer months. Days during the monsoon season had the lowest radon activity, which may be ascribed to the fact that less radon was being exhaled from the soil as a result of the rain. Radon was recorded at 8.06 ± 0.56 Bq/m3, temperature at 28.9 °C, humidity at 55.2% and pressure at 918 mbar.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Monitoramento de Radiação , Radônio , Estações do Ano , Radônio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Índia , Atmosfera/análise , Temperatura , Umidade , Humanos
7.
J Environ Manage ; 365: 121644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963970

RESUMO

The Earth's atmosphere contains ultrafine particles known as aerosols, which can be either liquid or solid particles suspended in gas. These aerosols originate from both natural sources and human activities, termed primary and secondary sources respectively. They have significant impacts on the environment, particularly when they transform into ultrafine particles or aerosol nanoparticles, due to their extremely fine atomic structure. With this context in mind, this review aims to elucidate the fundamentals of atmospheric-derived aerosol nanoparticles, covering their various sources, impacts, and methods for control and management. Natural sources such as marine, volcanic, dust, and bioaerosols are discussed, along with anthropogenic sources like the combustion of fossil fuels, biomass, and industrial waste. Aerosol nanoparticles can have several detrimental effects on ecosystems, prompting the exploration and analysis of eco-friendly, sustainable technologies for their removal or mitigation.Despite the adverse effects highlighted in the review, attention is also given to the generation of aerosol-derived atmospheric nanoparticles from biomass sources. This finding provides valuable scientific evidence and background for researchers in fields such as epidemiology, aerobiology, and toxicology, particularly concerning atmospheric nanoparticles.


Assuntos
Aerossóis , Atmosfera , Ecossistema , Nanopartículas , Aerossóis/análise , Nanopartículas/química , Atmosfera/química , Poluentes Atmosféricos/análise , Humanos , Monitoramento Ambiental , Material Particulado/análise
8.
Plant Physiol Biochem ; 213: 108793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870681

RESUMO

Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.


Assuntos
Fotossíntese , Synechococcus , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Synechococcus/crescimento & desenvolvimento , Atmosfera/química , Exobiologia , Luz , Dióxido de Carbono/metabolismo , Aclimatação , Oxigênio/metabolismo
9.
Sci Total Environ ; 945: 174086, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908591

RESUMO

Aerosol proteins, as core biological components of bioaerosols, are garnering increasing attention due to their environmental significance, including their roles in atmospheric processes and associated health risks. However, observational data on the proteins are very limited, leaving their distribution and variation in the atmosphere poorly understood. To investigate the long-distance transport of proteins with Asian dust in the Northern Hemisphere middle latitude westerlies to remote downwind areas, we quantified the soluble proteins in aerosol particles, referred to as aerosol soluble proteins (ASPs), collected in the coastal city of Kumamoto, Japan, during the spring of 2023, when three dust events occurred. The concentration of ASPs ranged from 0.22 to 1.68 µg m-3, with an average concentration of 0.73 ± 0.36 µg m-3 under dust conditions and 0.31 ± 0.05 µg m-3 under non-dust conditions. During the dust periods, the largest concentration of ASPs (1.68 µg m-3) coincided with the peak concentration of suspended particulate matter, and the concentration strongly correlated with the mass concentration of particles larger than 2.5 µm, indicating a close dependence of ASPs on dust particles. Primary estimations indicated a dry deposition flux of ASPs at approximately 1.10 ± 0.87 mg m-2 d-1 under the dust conditions. These results prove that Asian dust efficiently transports proteins, facilitating their dispersion in the atmosphere.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poeira , Monitoramento Ambiental , Poeira/análise , Japão , Aerossóis/análise , Poluentes Atmosféricos/análise , Proteínas/análise , Material Particulado/análise , Atmosfera/química
10.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889013

RESUMO

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Assuntos
Poluentes Atmosféricos , Atmosfera , Aprendizado de Máquina , Poluentes Atmosféricos/análise , Atmosfera/química , Óxidos de Nitrogênio/análise , Poluição do Ar , Ozônio/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise
11.
Environ Sci Technol ; 58(26): 11363-11375, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900148

RESUMO

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.


Assuntos
Aerossóis , Atmosfera , Tamanho da Partícula , Tensão Superficial , Atmosfera/química , Poluentes Atmosféricos/análise , China
12.
Environ Sci Pollut Res Int ; 31(29): 42372-42387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874757

RESUMO

Globally, the circular efficiency of biomass resources has become a priority due to the depletion and negative environmental impacts of fossil fuels. This study aimed to quantify the atmosphere-dependent combustion of Ganoderma lucidum (GL) biomass and its thermodynamic and kinetic parameters toward enhancing its circularity and transformability characteristics. The GL combustion occurred in the three stages of moisture removal, volatile release, and coke combustion. Combustion performance characteristics were more favorable in the N2/O2 atmosphere than in the CO2/O2 atmosphere under the same heating rates. The rising heating rate facilitated the release of volatiles. According to the model-free methods of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose, the activation energies essential for the primary reaction were 283.09 kJ/mol and 288.28 kJ/mol in the N2/O2 atmosphere and 233.09 kJ/mol and 235.64 kJ/mol in the CO2/O2 atmosphere. The gaseous products of the GL combustion included CH4, H2O, C = O, CO, CO2, NH3, C = C, and C-O(H). Ash prepared in both atmospheres exhibited a tendency for slag formation, with oxy-fuel combustion lowering its risk. This study thus provides a theoretical and practical basis for transforming GL residues into a sustainable energy source.


Assuntos
Biomassa , Reishi , Reishi/química , Atmosfera/química , Dióxido de Carbono/química , Dióxido de Carbono/análise
13.
Environ Sci Technol ; 58(25): 10956-10968, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38868859

RESUMO

Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.


Assuntos
Atmosfera , Atmosfera/química
14.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874561

RESUMO

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Assuntos
Poluentes Atmosféricos , Atmosfera , China , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Fluorocarbonos/análise , Teorema de Bayes , Politetrafluoretileno , Ciclobutanos
15.
Environ Sci Technol ; 58(25): 11105-11117, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866390

RESUMO

Volatile chemical products (VCPs) are increasingly recognized as significant sources of volatile organic compounds (VOCs) in urban atmospheres, potentially serving as key precursors for secondary organic aerosol (SOA) formation. This study investigates the formation and physicochemical transformations of VCP-derived SOA, produced through ozonolysis of VOCs evaporated from a representative room deodorant air freshener, focusing on the effects of aerosol evaporation on its molecular composition, light absorption properties, and reactive oxygen species (ROS) generation. Following aerosol evaporation, solutes become concentrated, accelerating reactions within the aerosol matrix that lead to a 42% reduction in peroxide content and noticeable browning of the SOA. This process occurs most effectively at moderate relative humidity (∼40%), reaching a maximum solute concentration before aerosol solidification. Molecular characterization reveals that evaporating VCP-derived SOA produces highly conjugated nitrogen-containing products from interactions between existing or transformed carbonyl compounds and reduced nitrogen species, likely acting as chromophores responsible for the observed brownish coloration. Additionally, the reactivity of VCP-derived SOA was elucidated through heterogeneous oxidation of sulfur dioxide (SO2), which revealed enhanced photosensitized sulfate production upon drying. Direct measurements of ROS, including singlet oxygen (1O2), superoxide (O2•-), and hydroxyl radicals (•OH), showed higher abundances in dried versus undried SOA samples under light exposure. Our findings underscore that drying significantly alters the physicochemical properties of VCP-derived SOA, impacting their roles in atmospheric chemistry and radiative balance.


Assuntos
Aerossóis , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Oxirredução , Poluentes Atmosféricos/química , Espécies Reativas de Oxigênio/química , Atmosfera/química
16.
Environ Geochem Health ; 46(7): 252, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879860

RESUMO

The present study was designed to assess concentrations, contamination levels, spatiotemporal variations, health hazards and source apportionment of potentially toxic elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and V) of atmospheric dry deposition (ADD) in Hamedan Metropolis. In so doing, a total of 144 atmospheric dry deposition samples were collected from 12 sites during four seasons in 2023. The concentrations of the analyzed PTEs in dry deposition samples were determined using ICP-OES after samples were digested with acid. The results illustrated that the average contents of As, Cd, Cr, Cu, Ni, Pb, and Zn with 4.52, 0.591, 4.01, 36.5, 42.5, 10.9, 84.6, 69.6, 178, and 3.91 mg/kg, respectively, were higher than those in the background samples reported for Iran, which could indicate the anthropogenic origin of these PTEs. The highest quantities of the tested PTEs in various seasons were observed in summer and/or fall samples and their highest amount in various functional regions pertained to the samples collected from the commercial or industrial regions, showing the effect of seasonal changes on emission sources and human inputs. Values of average contamination factor (CF), geo-accumulation index (I-geo), and enrichment factor (EF) ranged from 0.013 to 4.45, - 7.07 to 1.56, and 0.120 to 41.3, respectively, showing 'slight to high' pollution, 'unpolluted to moderately polluted', and 'no enrichment to very severe enrichment' levels, respectively. The pollution load index (PLI) with an average value of 0.680 reflected slight pollution levels in the entire study area. The average hazard index (HI) values of the tested PTEs for the residents were all within the safe limit (< 1). Additionally, the total carcinogenic risk (TCR) values showed that the carcinogenic risk of As, Cr and Ni for both target groups were at an acceptable level. Based on the positive matrix factorization (PMF) model, non-exhaust emissions and natural sources, fossil fuel combustion and industrial emissions, and traffic sources were identified as the primary contributors to ADD pollution, accounting for 26%, 38%, and 36%, of the total pollution respectively. In conclusion, further research is recommended to investigate the source-oriented ecological and health risks associated with atmospheric dry deposition pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Estações do Ano , Irã (Geográfico) , Poluentes Atmosféricos/análise , Humanos , Medição de Risco , Metais Pesados/análise , Cidades , Análise Espaço-Temporal , Atmosfera/química , Poluição do Ar/análise , Exposição Ambiental
17.
J Environ Radioact ; 277: 107432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833880

RESUMO

Beryllium-7 activity concentrations in the atmosphere and precipitation were continuously measured every day between April 2011 and December 2015 in Dazaifu, western Japan. The measured data were quantitatively analyzed to determine the precipitation-induced variation in 7Be activity concentrations. The average concentrations on nonprecipitation and precipitation days were 5.5 and 3.8 mBq/m3, respectively. This difference of 31% (1.7 mBq/m3) on average, was attributable to the washout effect, which was more significant in the summer. Regarding the association between 7Be activity concentration and precipitation, the concentration remained at a similar level for the small precipitation amount of <5.0 mm/day and showed a decreasing trend (but was insignificant) for the precipitation of 5.0-10.0 mm/day. A significant decrease in the concentration was observed for ≥10 mm/day. Furthermore, when precipitation occurred on two successive days, the 7Be activity concentrations on the second day significantly decreased regardless of precipitation.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Berílio , Monitoramento de Radiação , Berílio/análise , Japão , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Atmosfera/química , Radioisótopos/análise , Chuva/química , Estações do Ano
18.
Nature ; 631(8020): 335-339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867053

RESUMO

The initial rise of molecular oxygen (O2) shortly after the Archaean-Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O2 was oscillatory, with multiple returns to an anoxic state until perhaps 2.2 billion years ago1-3. Yet few constraints exist for contemporaneous marine oxygenation dynamics, precluding a holistic understanding of planetary oxygenation. Here we report thallium (Tl) isotope ratio and redox-sensitive element data for marine shales from the Transvaal Supergroup, South Africa. Synchronous with sulfur isotope evidence of atmospheric oxygenation in the same shales3, we found lower authigenic 205Tl/203Tl ratios indicative of widespread manganese oxide burial on an oxygenated seafloor and higher redox-sensitive element abundances consistent with expanded oxygenated waters. Both signatures disappear when the sulfur isotope data indicate a brief return to an anoxic atmospheric state. Our data connect recently identified atmospheric O2 dynamics on early Earth with the marine realm, marking an important turning point in Earth's redox history away from heterogeneous and highly localized 'oasis'-style oxygenation.


Assuntos
Atmosfera , Planeta Terra , Oxigênio , Água do Mar , Atmosfera/química , Sedimentos Geológicos/química , História Antiga , Oceanos e Mares , Oxirredução , Oxigênio/análise , Oxigênio/história , Oxigênio/metabolismo , Água do Mar/química , África do Sul , Isótopos de Enxofre/análise , Tálio/análise , Tálio/química
19.
Environ Sci Technol ; 58(28): 12598-12608, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38904976

RESUMO

Understanding the transport of 137Cs emitted during the Fukushima accident is challenging because the critical emissions that produced the high-deposition area are not adequately resolved in existing source terms. This paper presents an objective inverse reconstruction of these emissions by fusing atmospheric concentrations with a-priori emissions extracted from total depositions. This extraction, previously considered impossible for complex real-world accidents, is achieved by identifying the critical temporal formation process of depositions in the high-deposition area and estimating the corresponding emissions by using an atmospheric transport model. The reconstructed source term reveals two emission peaks from 10:00-11:00 and 14:00-15:00 on March 15, which agree with the in situ pressure measurements and accident analysis, suggesting that they came from pressure drops in the primary containment vessels of Units 3 and 2, respectively. This finding explains the environmental observations of spherical 137Cs particles. The source term also objectively and independently confirms the widely used reverse estimate. The corresponding 137Cs transport simulations better match the various observations than those produced by other source terms, proving that the two-peak emission creates a high-deposition area. The proposed method outperforms the direct fusion of deposition and atmospheric concentration observations, providing a robust tool for multiobservation fusion.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Radioisótopos de Césio , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioisótopos de Césio/análise , Poluentes Radioativos do Ar/análise , Atmosfera/química , Japão , Modelos Teóricos
20.
Environ Sci Technol ; 58(28): 12304-12312, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38935526

RESUMO

Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 µm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 µm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.


Assuntos
Atmosfera , Monitoramento Ambiental , Microplásticos , Oceanos e Mares , Microplásticos/análise , Atmosfera/química , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...