Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428428

RESUMO

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/diagnóstico , Antioxidantes/uso terapêutico , Ubiquinona/uso terapêutico , Ubiquinona/genética , Mutação
2.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272025

RESUMO

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estudos Retrospectivos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Complexo I de Transporte de Elétrons/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
3.
J Chin Med Assoc ; 87(1): 12-16, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016117

RESUMO

A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Masculino , Feminino , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , DNA Mitocondrial/genética , Mitocôndrias , Mutação , Trifosfato de Adenosina/uso terapêutico
5.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628761

RESUMO

Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Fibroblastos
6.
Eur J Neurol ; 30(8): 2525-2533, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158303

RESUMO

BACKGROUND: The aim of this study was to investigate the neuroretinal structure of young patients with Leber hereditary optic neuropathy (LHON). METHODS: For this retrospective cross-sectional analysis, the peripapillary retinal nerve fiber layer (pRNFL) thickness and the macular retinal layer volumes were measured by optical coherence tomography. Patients aged 12 years or younger at disease onset were assigned to the childhood-onset (ChO) group and those aged 13-16 years to the early teenage-onset (eTO) group. All patients received treatment with idebenone. The same measurements were repeated in age-matched control groups with healthy subjects. RESULTS: The ChO group included 11 patients (21 eyes) and the eTO group 14 patients (27 eyes). Mean age at onset was 8.6 ± 2.7 years in the ChO group and 14.8 ± 1.0 years in the eTO group. Mean best-corrected visual acuity was 0.65 ± 0.52 logMAR in the ChO group and 1.60 ± 0. 51 logMAR in the eTO group (p < 0.001). Reduced pRNFL was evident in the eTO group compared to the ChO group (46.0 ± 12.7 µm vs. 56.0 ± 14.5 µm, p = 0.015). Additionally, a significantly lower combined ganglion cell and inner plexiform layer volume was found in the eTO compared to the ChO group (0.266 ± 0.0027 mm3 vs. 0.294 ± 0.033 mm3 , p = 0.003). No difference in these parameters was evident between the age-matched control groups. CONCLUSION: Less neuroaxonal tissue degeneration was observed in ChO LHON than in eTO LHON, a finding that may explain the better functional outcome of ChO LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Adolescente , Criança , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Estudos Retrospectivos , Células Ganglionares da Retina , Estudos Transversais , Tomografia de Coerência Óptica/métodos
9.
Am J Ophthalmol ; 249: 108-125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36496192

RESUMO

PURPOSE: To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy. DESIGN: Pooled analysis of safety data from 5 clinical studies. METHODS: A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination, and systemic immune responses against rAAV2/2. RESULTS: Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients; none were serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%), and were of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. CONCLUSIONS: Lenadogene nolparvovec had a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product was well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments.


Assuntos
Atrofia Óptica Hereditária de Leber , Parvovirinae , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Vetores Genéticos , Parvovirinae/genética , Terapia Genética , Inflamação/etiologia
10.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361994

RESUMO

Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , DNA Mitocondrial/metabolismo , Células Ganglionares da Retina/metabolismo , Mitocôndrias/genética , Previsões
11.
Rom J Morphol Embryol ; 63(1): 213-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074687

RESUMO

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to optic atrophy due to degeneration of the retinal ganglion cell. A curative treatment is not available at the moment, but a new antioxidant drug, Idebenone, is expected to reduce the progression of the disorder. Two male patients, genetically confirmed with LHON, were clinically, morphologically, and electrophysiologically evaluated, before and three, six, nine and 12 months after starting the treatment. The patient with 3460G>A mutation in mitochondrially-encoded nicotinamide adenine dinucleotide, reduced form (NADH):ubiquinone oxidoreductase core subunit (mtND)1 gene showed an improvement in visual acuity, visual field, and visual evoked potentials with no effect on morphological examinations, while the patient with 11778G>A mutation in mtND4 gene showed no functional, nor morphological recovery after one year of treatment. This study demonstrates that Idebenone, depending on the genetic profile of the disease, may be effective in functional improvement in patients with LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Potenciais Evocados Visuais , Humanos , Masculino , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Retina , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
13.
Acta Ophthalmol ; 100(6): 700-706, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35394113

RESUMO

PURPOSE: The purpose of the study was to present results from a national Dutch cohort of patients with Leber's Hereditary Optic Neuropathy (LHON) treated with idebenone. METHODS: The multicentre, open-label, retrospective evaluation of the long-term outcome of idebenone treatment of Dutch LHON patients on visual function and on thickness of the retinal ganglion cell layer. Patients included in the analysis had a confirmed mutation in their mitochondrial DNA encoding either of the seven subunits of complex I, had a reported loss of vision in at least one eye and had a follow-up of more than 6 months after their treatment was started. Control visits involved routine clinical examinations of visual function and retinal structure at (1) the start of treatment, (2) nadir (time of lowest visual acuity), (3) the time of recovery (if any), (4) the time of termination of treatment and (5) more than 6 months after termination of the treatment. RESULTS: Data from 72 patients were analysed. Treatment duration was 23.8 ± 14.4 (mean ± SD) months. A positive response, that is either a clinically relevant recovery (CRR) or a clinically relevant stabilization (CRS), occurred in 53% and 11% of the patients, respectively. The magnitude of CRR was 0.41 ± 1.54 logMAR. CRR of visual acuity is associated with recovery of colour discrimination. The thickness of both the ganglion cell complex (GCC) and the retinal nerve fibre layer (RNFL) is irreversibly reduced. CONCLUSION: Our results confirm that idebenone may help to restore or maintain visual function. Whether this effect will persist is still unknown. Thinning of retinal neural tissue appears to be permanent.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona , Antioxidantes/uso terapêutico , Estudos de Coortes , Humanos , Países Baixos/epidemiologia , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Estudos Retrospectivos , Resultado do Tratamento , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico
14.
Mitochondrion ; 62: 181-186, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915201

RESUMO

In this retrospective, interventional, longitudinal small case series, we looked at the visual effects of pharmacologic intervention with 4-aminopyridine (4-AP) in chronic Leber's Hereditary Optic Neuropathy (LHON) patients who are non-responders to idebenone. We illustrate, as examples, the visual progression of three LHON patients with 4-AP as add-on therapy to idebenone. Each patient had a different primary LHON mutation and was treated with idebenone within one year of onset. No response to idebenone at 300 mg orally three times a day ranged from less than one year to 2.5 years, and the addition of 4-AP at 10 mg orally two times a day ranged from 24 to 29 months. Outcome measures included best-corrected distance visual acuity, color vision, automated perimetry, the average retinal nerve fiber layer (RNFL) thickness, and the full-field photopic negative response (PhNR) amplitude. The 19-year-old man with the LHON mutation 11778A > G had no response to the addition of 4-AP to idebenone. The 27-year-old man with the LHON mutation 3460A > G experienced a significant response to 4-AP. Finally, the 40-year-old man with the LHON mutation 14484 T > C had a milder response. Although this case series was too small to demonstrate the efficacy of idebenone with add-on 4AP, it allowed us to consider a new hypothesis that neuronal activity generated from 4-AP can add more potential for visual recovery in LHON patients.


Assuntos
4-Aminopiridina/uso terapêutico , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Ubiquinona/análogos & derivados , 4-Aminopiridina/administração & dosagem , Adulto , DNA Mitocondrial/genética , Quimioterapia Combinada , Humanos , Masculino , Estudos Retrospectivos , Ubiquinona/administração & dosagem , Ubiquinona/uso terapêutico , Adulto Jovem
15.
Ned Tijdschr Geneeskd ; 1652021 10 28.
Artigo em Holandês | MEDLINE | ID: mdl-34854587

RESUMO

BACKGROUND: Leber hereditary optic neuropathy (LHON) is an orphan disease which leads to painless subacute loss of central vision in both eyes. It develops mainly in young adults and is more common in males. It most often leads to lifelong blindness. Idebenone has shown to have a favourable effect in promoting vision recovery in LHON-patients with recent visual impairement. CASE DESCRIPTION: Two male LHON patients, aged 27 and 54 years of age were misdiagnosed during one year with optic neuritis and conversion disorder. The delay caused unnecessary emotional suffering and took away the opportunity of idebenone treatment. This can be prevented by greater awareness of disease characteristcs and OCT-scanning. CONCLUSION: Therapy for LHON requires a timely diagnosis.


Assuntos
Atrofia Óptica Hereditária de Leber , Neurite Óptica , Adulto , Cegueira , Diagnóstico Precoce , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética
16.
Eur J Pharm Biopharm ; 168: 195-207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500025

RESUMO

Leber's Hereditary Optic Neuropathy (LHON) is a hereditary mitochondrial neurodegenerative disease of unclear etiology and lack of available therapeutic alternatives. The main goal of the current pilot study was based on the evaluation of the feasibility and characteristics of prolonged and controlled idebenone release from a PCL intravitreal implant. The design, development, and characterization of idebenone-loaded PCL implants prepared by an homogenization/extrusion/solvent evaporation method allowed the obtention of high PY, EE and LC values. In vitro characterization was completed by the assessment of mechanical and instrumental properties. The in vitro release of idebenone from the PCL implants was assessed and the implant erosion was monitored by the mass loss and surface morphology changes. DSC was used to estimate stability and interaction among implant's components. The present work demonstrated the controlled and prolonged idebenone delivery from the PCL implants in an in vitro model. A consistent preclinical base was established, supporting the idea of idebenone-loaded PCL implants as a new strategy of long-term sustained intraocular delivery for the LHON treatment.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Poliésteres/química , Ubiquinona/análogos & derivados , Animais , Química Farmacêutica/métodos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Preparações de Ação Retardada , Implantes de Medicamento , Estabilidade de Medicamentos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Projetos Piloto , Ubiquinona/administração & dosagem , Ubiquinona/química
17.
J Pharmacol Sci ; 147(2): 200-207, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34384568

RESUMO

Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON.


Assuntos
Compostos de Anilina/farmacologia , Descoberta de Drogas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Piperazinas/farmacologia , Rotenona/efeitos adversos , Animais , Células Cultivadas , DNA Mitocondrial/genética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estresse do Retículo Endoplasmático/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Mutação , Atrofia Óptica Hereditária de Leber/induzido quimicamente , Atrofia Óptica Hereditária de Leber/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
18.
Mitochondrion ; 60: 12-20, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252606

RESUMO

Complex III (CIII) is the third out of five mitochondrial respiratory chain complexes residing at the mitochondrial inner membrane. The assembly of 10 subunits encoded by nuclear DNA and one by mitochondrial DNA result in the functional CIII which transfers electrons from ubiquinol to cytochrome c. Deficiencies of CIII are among the least investigated mitochondrial disorders and thus clinical spectrum of patients with mutations in CIII is not well defined. We report on a 10-year-old girl born to consanguineous Iranian parents presenting with recurrent visual loss episodes and optic nerve contrast enhancement in brain imaging reminiscent of an acquired demyelination syndrome (i.e. optic neuritis or multiple sclerosis), who was ultimately confirmed to have a novel homozygous missense variant of unknown significance, c.949C > T; p.(Arg317Trp) in the CYC1 gene, a nuclear DNA subunit of complex III of the mitochondrial chain. Sanger sequencing confirmed the segregation of this variant with disease in the family. The effect of this variant on the protein structure was shown in-silico. Our findings, not only expand the clinical spectrum due to defects in CYC1 gene but also highlight that mitochondrial respiratory chain disorders could be considered as a potential differential diagnosis in children who present with unusual patterns of acquired demyelination syndromes (ADS). In addition, our results support the hypothesis that mitochondrial disorders might have an overlapping presentation with ADS.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Atrofia Óptica Hereditária de Leber/genética , Substituição de Aminoácidos , Sequência de Bases , Encéfalo/patologia , Criança , Simulação por Computador , Transporte de Elétrons , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Humanos , Metilprednisolona/administração & dosagem , Metilprednisolona/uso terapêutico , Modelos Moleculares , Mutação de Sentido Incorreto , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Prednisolona/administração & dosagem , Prednisolona/uso terapêutico , Conformação Proteica
20.
Medicina (Kaunas) ; 57(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652663

RESUMO

Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15-35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Humanos , Masculino , Mitocôndrias , Mutação , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...