Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Liver Int ; 42(2): 468-478, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719108

RESUMO

BACKGROUND AND AIMS: Liver regeneration is a complex process regulated by a variety of cells, cytokines and biological pathways. Aurora kinase A (AURKA) is a serine/threonine kinase that plays a role in centrosome maturation and spindle formation during the cell division cycle. The purpose of this study was to further explore the mechanism of AURKA on liver regeneration and to identify new possible targets for liver regeneration. METHODS: The effect and mechanism of AURKA on liver regeneration were studied using a 70% hepatectomy model. Human liver organoids were used as an in vitro model to investigate the effect of AURKA on hepatocyte proliferation. RESULTS: AURKA inhibition significantly reduced the level of ß-catenin protein by reducing the phosphorylation level of glycogen synthase kinase-3ß (GSK-3ß), leading to the inhibition of liver regeneration. Further studies showed that AURKA co-localized and interacted with GSK-3ß in the cytoplasm of hepatocytes. When phosphorylation of GSK-3ß was enhanced, the total GSK-3ß level remained unchanged, while AURKA was not affected, and ß-catenin protein levels were increased. In addition, AURKA inhibition affected the formation and proliferation of human liver organoids. Furthermore, AURKA inhibition led to the polarization of M1 macrophages and the release of interleukin-6 and Tumour necrosis factor α, which also led to reduced liver regeneration and increased liver injury. CONCLUSIONS: These results provide more details on the mechanism of liver regeneration and suggest that AURKA is an important regulator of this mechanism.


Assuntos
Aurora Quinase A/fisiologia , Regeneração Hepática , Macrófagos/citologia , Via de Sinalização Wnt , Polaridade Celular , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Macrófagos/metabolismo , beta Catenina/metabolismo
2.
Cell Death Dis ; 12(6): 620, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131100

RESUMO

Neuroblastoma (NB) is the most common extracranial solid malignancy in children and its mortality rate is relatively high. However, driver genes of NB are not clearly identified. Using bioinformatics analysis, we determined the top 8 differentially expressed genes (DEGs) in NB, including GFAP, PAX6, FOXG1, GAD1, PTPRC, ISL1, GRM5, and GATA3. Insulin gene enhancer binding protein 1 (ISL1) is a LIM homeodomain transcription factor which has been found to be highly expressed in a variety of malignant tumors, but the function of ISL1 in NB has not been fully elucidated. We identified ISL1 as an oncogene in NB. ISL1 is preferentially upregulated in NB tissues compared with normal tissues. High ISL1 expression is significantly associated with poor outcome of NB patients. Knockdown of ISL1 markedly represses proliferation and induces cell apoptosis in vitro, and suppresses tumorigenicity in vivo, while overexpression of ISL1 has the opposite effects. Mechanistically, we demonstrate that ISL1 promotes cell proliferation and EMT transformation through PI3K/AKT signaling pathway by upregulating Aurora kinase A (AURKA), a serine-threonine kinase that is essential for the survival of NB cells. The blockade of AURKA attenuates the function of ISL1 overexpression in the regulation of cell proliferation and migration, Conclusively, this study showed that ISL1 targeted AURKA to facilitate the development of NB, which provided new insights into the tumorigenesis of NB. Thus, ISL1 may be a promising therapeutic target in the future.


Assuntos
Carcinogênese/genética , Transição Epitelial-Mesenquimal/genética , Proteínas com Homeodomínio LIM/fisiologia , Neuroblastoma/genética , Fatores de Transcrição/fisiologia , Animais , Aurora Quinase A/metabolismo , Aurora Quinase A/fisiologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
3.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820826

RESUMO

Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin-independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.


Assuntos
Aurora Quinase A/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Animais , Aurora Quinase A/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Mitofagia/fisiologia , Proibitinas , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases
4.
Nucleic Acids Res ; 48(14): 7844-7855, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32652013

RESUMO

The catalytic activity of human AURORA-A kinase (AURKA) regulates mitotic progression, and its frequent overexpression in major forms of epithelial cancer is associated with aneuploidy and carcinogenesis. Here, we report an unexpected, kinase-independent function for AURKA in DNA replication initiation whose inhibition through a class of allosteric inhibitors opens avenues for cancer therapy. We show that genetic depletion of AURKA, or its inhibition by allosteric but not catalytic inhibitors, blocks the G1-S cell cycle transition. A catalytically inactive AURKA mutant suffices to overcome this block. We identify a multiprotein complex between AURKA and the replisome components MCM7, WDHD1 and POLD1 formed during G1, and demonstrate that allosteric but not catalytic inhibitors prevent the chromatin assembly of functional replisomes. Indeed, allosteric but not catalytic AURKA inhibitors sensitize cancer cells to inhibition of the CDC7 kinase subunit of the replication-initiating factor DDK. Thus, our findings define a mechanism essential for replisome assembly during DNA replication initiation that is vulnerable to inhibition as combination therapy in cancer.


Assuntos
Aurora Quinase A/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Regulação Alostérica , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Pontos de Checagem da Fase G1 do Ciclo Celular , Células HeLa , Humanos , Interfase/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Origem de Replicação
5.
Int J Oncol ; 57(5): 1095-1102, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33491761

RESUMO

The primary cilium is a non­motile cellular structure extending from the apical membrane of epithelial cells that is involved in several processes due to its ability to receive and elaborate different signals. Ciliogenesis and its obliteration are essential for proliferating cells, and several signalling pathways are responsible for their regulation. In fact, the primary cilium is a central hub for numerous signalling pathways implicated in a variety of biological processes, such as the Hedgehog, mammalian target of rapamycin and Wnt pathways. Loss of primary cilia has been recently correlated with different types of tumours, including pancreatic ductal adenocarcinoma (PDAC). K­Ras and HDAC2 were recently identified as possible ciliogenesis regulators in PDAC, likely acting through Aurora A kinase (AURKA) which, in turn, controls inositol polyphosphate­5­phosphatase E. However, the exact molecular mechanisms underlying this regulatory effect remain to be fully elucidated. In the present study, the regulation of the main genes involved in primary cilia assembly/resorption was reconstructed showing the links with the Hedgehog and phosphoinositide 3­kinase/AKT pathways. Finally, by analysing gene expression databases, the regulatory genes that have high probability to be associated with prognosis, histological grade and pathological stage in patients with PDAC have been highlighted. However, further experimental studies are required to reach definitive conclusions on the roles of these genes. Improving our understating of ciliogenesis and its regulators may help develop ciliotherapies using histone deacetylase and AURKA inhibitors, which may induce re­differentiation of tumour cells into normal cells by reducing tumour growth or inducing apoptosis of cancer cells.


Assuntos
Carcinoma Ductal Pancreático/patologia , Cílios/fisiologia , Neoplasias Pancreáticas/patologia , Aurora Quinase A/fisiologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Cílios/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais
6.
Oncogene ; 38(1): 73-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082913

RESUMO

Primary glioblastoma is the most frequent human brain tumor in adults and is generally fatal due to tumor recurrence. We previously demonstrated that glioblastoma-initiating cells invade the subventricular zones and promote their radio-resistance in response to the local release of the CXCL12 chemokine. In this work, we show that the mitotic Aurora A kinase (AurA) is activated through the CXCL12-CXCR4 pathway in an ERK1/2-dependent manner. Moreover, the CXCL12-ERK1/2 signaling induces the expression of Ajuba, the main cofactor of AurA, which allows the auto-phosphorylation of AurA.We show that AurA contributes to glioblastoma cell survival, radio-resistance, self-renewal, and proliferation regardless of the exogenous stimulation with CXCL12. On the other hand, AurA triggers the CXCL12-mediated migration of glioblastoma cells in vitro as well as the invasion of the subventricular zone in xenograft experiments. Moreover, AurA regulates cytoskeletal proteins (i.e., Actin and Vimentin) and favors the pro-migratory activity of the Rho-GTPase CDC42 in response to CXCL12. Altogether, these results show that AurA, a well-known kinase of the mitotic machinery, may play alternative roles in human glioblastoma according to the CXCL12 concentration.


Assuntos
Aurora Quinase A/fisiologia , Neoplasias Encefálicas/enzimologia , Quimiocina CXCL12/fisiologia , Glioblastoma/enzimologia , Proteínas de Neoplasias/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular , Quimiocina CXCL12/farmacologia , Ativação Enzimática , Glioblastoma/patologia , Xenoenxertos , Humanos , Proteínas com Domínio LIM/biossíntese , Proteínas com Domínio LIM/genética , Ventrículos Laterais/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Invasividade Neoplásica , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores CXCR4/fisiologia , Transdução de Sinais
7.
Dev Biol ; 440(2): 88-98, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753017

RESUMO

In metazoans, organisms arising from a fertilized egg, the embryo will develop through multiple series of cell divisions, both symmetric and asymmetric, leading to differentiation. Aurora A is a serine threonine kinase highly involved in such divisions. While intensively studied at the cell biology level, its function in the development of a whole organism has been neglected. Here we investigated the pleiotropic effect of Aurora A loss-of-function in Drosophila larval early development. We report that Aurora A is required for proper larval development timing control through direct and indirect means. In larval tissues, Aurora A is required for proper symmetric division rate and eventually development speed as we observed in central brain, wing disc and ring gland. Moreover, Aurora A inactivation induces a reduction of ecdysteroids levels and a pupariation delay as an indirect consequence of ring gland development deceleration. Finally, although central brain development is initially restricted, we confirmed that brain lobe size eventually increases due to additive phenotypes: delayed pupariation and over-proliferation of cells with an intermediate cell-identity between neuroblast and ganglion mother cell resulting from defective asymmetric neuroblast cell division.


Assuntos
Aurora Quinase A/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Larva/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Divisão Celular/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Pleiotropia Genética/genética , Larva/fisiologia , Mutação com Perda de Função/genética , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Fuso Acromático/metabolismo
8.
Mol Cells ; 41(5): 444-453, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29477140

RESUMO

Aberrations in histone modifications are being studied in mixed-lineage leukemia (MLL)-AF9-driven acute myeloid leukemia (AML). In this study, we focused on the regulation of the differentiation of the MLL-AF9 type AML cell line THP-1. We observed that, upon phorbol 12-myristate 13-acetate (PMA) treatment, THP-1 cells differentiated into monocytes by down-regulating Aurora kinase A (AURKA), resulting in a reduction in H3S10 phosphorylation. We revealed that the AURKA inhibitor alisertib accelerates the expression of the H3K27 demethylase KDM6B, thereby dissociating AURKA and YY1 from the KDM6B promoter region. Using Flow cytometry, we found that alisertib induces THP-1 differentiation into monocytes. Furthermore, we found that treatment with the KDM6B inhibitor GSK-J4 perturbed the PMA-mediated differentiation of THP-1 cells. Thus, we discovered the mechanism of AURKA-KDM6B signaling that controls the differentiation of THP-1 cells, which has implications for biotherapy for leukemia.


Assuntos
Aurora Quinase A/fisiologia , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/fisiologia , Leucemia Monocítica Aguda/patologia , Proteínas de Neoplasias/fisiologia , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Benzazepinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Genes Reporter , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/metabolismo , Monócitos/citologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Fusão Oncogênica/fisiologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição YY1/metabolismo
9.
Nat Rev Cancer ; 17(2): 93-115, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28127048

RESUMO

Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/fisiologia , Proteínas de Ciclo Celular/fisiologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/fisiologia , Ensaios Clínicos como Assunto , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/fisiologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/fisiologia , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/fisiologia , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Quinase 1 Polo-Like
10.
Nat Commun ; 7: 11727, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27242098

RESUMO

The Golgi apparatus is composed of stacks of cisternae laterally connected by tubules to form a ribbon-like structure. At the onset of mitosis, the Golgi ribbon is broken down into discrete stacks, which then undergo further fragmentation. This ribbon cleavage is required for G2/M transition, which thus indicates that a 'Golgi mitotic checkpoint' couples Golgi inheritance with cell cycle transition. We previously showed that the Golgi-checkpoint regulates the centrosomal recruitment of the mitotic kinase Aurora-A; however, how the Golgi unlinking regulates this recruitment was unknown. Here we show that, in G2, Aurora-A recruitment is promoted by activated Src at the Golgi. Our data provide evidence that Src and Aurora-A interact upon Golgi ribbon fragmentation; Src phosphorylates Aurora-A at tyrosine 148 and this specific phosphorylation is required for Aurora-A localization at the centrosomes. This process, pivotal for centrosome maturation, is a fundamental prerequisite for proper spindle formation and chromosome segregation.


Assuntos
Aurora Quinase A/fisiologia , Centrossomo/fisiologia , Fase G2/fisiologia , Complexo de Golgi/metabolismo , Quinases da Família src/fisiologia , Animais , Aurora Quinase A/genética , Proteína Tirosina Quinase CSK , Segregação de Cromossomos/fisiologia , Células HeLa , Humanos , Indóis/farmacologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Fase S/efeitos dos fármacos , Sulfonamidas/farmacologia , Timidina/farmacologia , Tirosina/metabolismo , Quinases da Família src/antagonistas & inibidores
11.
Sci Rep ; 6: 28436, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27341528

RESUMO

AurkA overexpression was previously found in breast cancer and associated to its ability in controlling chromosome segregation during mitosis, however whether it may affect breast cancer cells, endorsed with stem properties (BCICs), is still unclear. Surprisingly, a strong correlation between AurkA expression and ß-catenin localization in breast cancer tissues suggested a link between AurkA and Wnt signaling. In our study, AurkA knock-down reduced wnt3a mRNA and suppressed metastatic signature of MDA-MB-231 cells. As a consequence, the amount of BCICs and their migratory capability dramatically decreased. Conversely, wnt3a mRNA stabilization and increased CD44(+)/CD24(low/-) subpopulation was found in AurkA-overexpressing MCF7 cells. In vivo, AurkA-overexpressing primary breast cancer cells showed higher tumorigenic properties. Interestingly, we found that AurkA suppressed the expression of miR-128, inhibitor of wnt3a mRNA stabilization. Namely, miR-128 suppression realized after AurkA binding to Snail. Remarkably, a strong correlation between AurkA and miR-128 expression in breast cancer tissues confirmed our findings. This study provides novel insights into an undisclosed role for the kinase AurkA in self-renewal and migration of BCICs affecting response to cancer therapies, metastatic spread and recurrence. In addition, it suggests a new therapeutic strategy taking advantage of miR-128 to suppress AurkA-Wnt3a signaling.


Assuntos
Aurora Quinase A/fisiologia , Neoplasias da Mama/enzimologia , MicroRNAs/genética , Células-Tronco Neoplásicas/fisiologia , Proteína Wnt3A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/patologia , Autorrenovação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Estabilidade Proteica , beta Catenina/metabolismo
12.
Clin Lab ; 62(4): 697-703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27215090

RESUMO

BACKGROUND: Suppression of Aurora kinase A (Aurora-A, AURKA) by Aurora-A siRNA has been proposed for lung tumor treatment. However, protocols using single administration have shown little benefit in some types of lung tumor. Given that transfection efficiency of Aurora-A siRNA is low due to tightly packed cells in the tumor, we hypothesized that repeated administration would result in efficient cell apoptosis. METHODS: We compared single vs. repeated transfection (thrice) in A549 cells by transfecting Aurora-A siRNA (siA) on the 1st or 1st, 2nd and 3rd day after cell seeding. A random sequence was used as the negative siRNA control (siC). Cells in the single transfection group received only transfection reagent without siRNAs on the 2nd and 3rd day. RESULTS: Two days after the third transfection, both single and repeated siA administration decreased mRNA expression of Aurora-A and cell viability compared to no administration and siC single administration. However, the decrease in these two indices with repeated transfection was more obvious than that following single administration: cell viability decreased to 72.8 ± 3.05% (p < 0.05) following siA single transfection and to 64.2 ± 1.99% (p < 0.05) following siA repeated transfection, compared with normal control cells, respectively. Gene expression decreased to 17 ± 16.6% (p < 0.05 vs. normal control) following siA repeated transfection and to 43.2 ± 13.0% (p < 0.05 vs. normal control) following siA single transfection. CONCLUSIONS: Compared to single transfection, repeated Aurora-A siRNA transfection decreased Aurora-A, which, in turn, resulted in effective apoptosis of A549 cells.


Assuntos
Apoptose , Aurora Quinase A/genética , RNA Interferente Pequeno/genética , Transfecção , Aurora Quinase A/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos
13.
Cancer Cell ; 29(4): 536-547, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27050099

RESUMO

MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.


Assuntos
Adenocarcinoma/genética , Transformação Celular Neoplásica/genética , Células Epiteliais/patologia , Proteínas de Neoplasias/fisiologia , Tumores Neuroendócrinos/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Adenocarcinoma/patologia , Animais , Antineoplásicos/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/fisiologia , Azepinas/uso terapêutico , Linhagem Celular Tumoral , Ativação Enzimática , Células Epiteliais/metabolismo , Exoma , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Tumores Neuroendócrinos/patologia , Orquiectomia , Compostos de Fenilureia/uso terapêutico , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Pirimidinas/uso terapêutico , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Tumour Biol ; 37(3): 3071-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26423403

RESUMO

Colorectal adenomatous polyp (CRAP) is a major risk factor for the development of sporadic colorectal cancer (CRC). Histone modifications are one of the epigenetic mechanisms that may have key roles in the carcinogenesis of CRC. The objective of the present study is to investigate the alternations in the defined histone modification gene expression profiles in patients with CRAP and CRC. Histone modification enzyme key gene expressions of the CRC, CRAP, and control groups were evaluated and compared using the reverse transcription PCR (RT-PCR) array method. Gene expression analysis was performed in the CRAP group after dividing the patients into subgroups according to the polyp diameter, pathological results, and morphological parameters which are risk factors for developing CRC in patients with CRAP. PAK1, NEK6, AURKA, AURKB, HDAC1, and HDAC7 were significantly more overexpressed in CRC subjects compared to the controls (p < 0.05). PAK1, NEK6, AURKA, AURKB, and HDAC1 were significantly more overexpressed in the CRAP group compared to the controls (p < 0.005). There were no significant differences between the CRAP and CRC groups with regards to PAK1, NEK6, AURKA, or AURKB gene overexpression. PAK1, NEK6, AURKA, and AURKB were significantly in correlation with the polyp diameter as they were more overexpressed in polyps with larger diameters. In conclusion, overexpressions of NEK6, AURKA, AURKB, and PAK1 genes can be used as predictive markers to decide the colonoscopic surveillance intervals after the polypectomy procedure especially in polyps with larger diameters.


Assuntos
Adenocarcinoma/genética , Polipose Adenomatosa do Colo/genética , Aurora Quinase A/genética , Aurora Quinase B/genética , Neoplasias Colorretais/genética , Quinases Ativadas por p21/genética , Adenocarcinoma/patologia , Polipose Adenomatosa do Colo/patologia , Adulto , Idoso , Aurora Quinase A/fisiologia , Aurora Quinase B/fisiologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/fisiologia , Quinases Ativadas por p21/fisiologia
15.
J Cell Biol ; 210(1): 45-62, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124292

RESUMO

Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression.


Assuntos
Aurora Quinase A/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Cinesinas/metabolismo , Mitose , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
16.
Blood ; 125(13): 2141-50, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25670627

RESUMO

Aurora kinase A (AURKA) is a therapeutic target in acute megakaryocytic leukemia. However, its requirement in normal hematopoiesis and megakaryocyte development has not been extensively characterized. Based on its role as a cell cycle regulator, we predicted that an Aurka deficiency would lead to severe abnormalities in all hematopoietic lineages. Here we reveal that loss of Aurka in hematopoietic cells causes profound cell autonomous defects in the peripheral blood and bone marrow. Surprisingly, in contrast to the survival defects of nearly all hematopoietic lineages, deletion of Aurka was associated with increased differentiation and polyploidization of megakaryocytes both in vivo and in vitro. Furthermore, in contrast to other cell types examined, megakaryocytes continued DNA synthesis after loss of Aurka. Thus, like other cell cycle regulators such as Aurkb and survivin, Aurka is required for hematopoiesis, but is dispensable for megakaryocyte endomitosis. Our work supports a growing body of evidence that the megakaryocyte endomitotic cell cycle differs significantly from the proliferative cell cycle.


Assuntos
Aurora Quinase A/fisiologia , Diferenciação Celular/genética , Hematopoese/genética , Megacariócitos/fisiologia , Mitose/genética , Células-Tronco Adultas/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poliploidia , Trombopoese/genética
17.
Oncol Rep ; 33(4): 1860-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25634113

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) have been used to treat non-small cell lung carcinoma (NSCLC) patients that have EGFR-activating mutations. EGFR-TKI monotherapy in most NSCLC patients with EGFR mutations who initially respond to EGFR-TKIs results in the development of acquired resistance. We investigated the role of fibroblasts in stromal cell-mediated resistance to gefitinib-induced apoptosis in EGFR-mutant NSCLC cells. While gefitinib induced apoptosis in EGFR-mutant NSCLC cells, apoptosis induction was diminished under stromal co-culture conditions. Protection appeared to be mediated in part by Aurora-A kinase (AURKA) upregulation. The protective effect of stromal cells was significantly reduced by pre-exposure to AURKA-shRNA. We suggest that combinations of AURKA antagonists and EGFR inhibitors may be effective in clinical trials targeting mutant EGFR NSCLCs.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Fibroblastos/enzimologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Aurora Quinase A/biossíntese , Aurora Quinase A/genética , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos/fisiologia , Indução Enzimática/efeitos dos fármacos , Receptores ErbB/deficiência , Gefitinibe , Redes Reguladoras de Genes/efeitos dos fármacos , Genes erbB-1 , Humanos , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais , Células Estromais/enzimologia , Proteína Supressora de Tumor p53/fisiologia , Regulação para Cima/efeitos dos fármacos
18.
Inflammation ; 38(2): 800-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25227280

RESUMO

Macrophage polarization is a dynamic and integral process of tissue inflammation and remodeling. Here we demonstrate an important role of Aurora kinase A in the regulation of inflammatory M1 macrophage polarization. We found that there was an elevated expression of Aurora-A in M1 macrophages and inhibition of Aurora-A by small molecules or specific siRNA selectively led to the suppression of M1 polarization, sparing over the M2 macrophage differentiation. At the molecular level, we found that the effects of Aurora-A in M1 macrophages were mediated through the down-regulation of NF-κB pathway and subsequent IRF5 expression. In an autoimmune disease model, experimental autoimmune encephalitis (EAE), treatment with Aurora kinase inhibitor blocked the disease development and shifted the macrophage phenotype from inflammatory M1 to anti-inflammatory M2. Thus, this study reveals a novel function of Aurora-A in controlling the polarization of macrophages, and modification of Aurora-A activity may lead to a new therapeutic approach for chronic inflammatory diseases.


Assuntos
Aurora Quinase A/fisiologia , Polaridade Celular/fisiologia , Encefalomielite Autoimune Experimental/enzimologia , Macrófagos/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
19.
J BUON ; 20(6): 1414-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26854435

RESUMO

PURPOSE: The aim of this study was to determine the expression level of Aurora A in human breast cancer tissues and to test whether there is a relationship between its expression levels and clinicopathological parameters including response to taxanes, tumor grade, estrogen receptor (ER) status, human epidermal growth factor receptor 2 (HER2) status, and overall survival (OS). METHODS: We retrospectively analyzed paraffin-embedded tissue sections from 49 metastatic breast cancer patients whose clinical outcomes had been tracked after taxane treatment. The expression status of Aurora A was defined by immunohistochemistry (IHC) using the anti-Aurora A antibody. RESULTS: Aurora A was overexpressed in 73% of the examined specimens. There was significant correlation between high Aurora A expression and decreased taxane sensitivity (p=0.02). There was no association between the clinicopathological parameters including histologic grade, ER positivity and triple negative molecular subtype and the level of Aurora A expression. However, HER2 positive tumors showed significantly higher Aurora A expression compared with HER2 negative tumors (p=0.02). Kaplan-Meier survival analysis failed to show a significant correlation between expression levels of Aurora A and OS although patients with low Aurora A levels had a marginally longer survival compared to patients with high levels. CONCLUSION: Our data suggest that Aurora A may be a promising predictive and prognostic marker in patients with breast cancer.


Assuntos
Aurora Quinase A/fisiologia , Neoplasias da Mama/enzimologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Taxoides/uso terapêutico , Aurora Quinase A/análise , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Prognóstico , Receptor ErbB-2/análise , Estudos Retrospectivos
20.
Biochim Biophys Acta ; 1846(2): 630-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25450825

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that commonly arises in later stages of castration resistant prostate cancer (CRPC) The detection of NEPC has clinical implications as these patients are often treated with platinum chemotherapy rather than with androgen receptor targeted therapies. The poor molecular characterization of NEPC accounts in part for the lack of disease specific therapeutics. Several mechanisms are involved in NE differentiation, including inflammation and autophagy, and may actually represent future therapeutic targets for advanced NEPC patients. Furthermore, a growing body of evidence suggests a potential role of circulating tumor cells in the early diagnosis and treatment of NEPC. Here we summarize the recent findings on NEPC pathogenesis and we discuss the ongoing clinical trials and future perspectives for the treatment of NEPC patients.


Assuntos
Células Neuroendócrinas/citologia , Neoplasias da Próstata/patologia , Inibidores da Angiogênese/uso terapêutico , Aurora Quinase A/fisiologia , Autofagia , Carcinogênese , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Células Neoplásicas Circulantes , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...