Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 39(2): 291-302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23907404

RESUMO

The serotonin 1A receptor (5-HT1A) has a major role in modulating the effects of serotonin on mood and behavior. Previous studies have shown that knockout of 5-HT1A selectively in the raphe leads to higher levels of anxiety during adulthood. However, it remains unclear whether this phenotype is due to variation in receptor levels specifically during development or throughout life. To test the hypothesis that developmental sensitivity may underlie the effects of 5-HT1A on anxiety, we used an inducible transgenic system to selectively suppress 5-HT1A levels in serotonergic raphe neurons from post-natal days (P) 14 to P30, with a maximal reduction of 40% at P21 and return to regular levels by P30. This developmental decrease in receptor levels has long-lasting consequences, increasing anxiety and decreasing social investigation in adulthood. In addition, post-natal knockdown of autoreceptors leads to long-term increases in the excitability of serotonergic neurons, which may represent a mechanism underlying the effects of post-natal receptor variation on behavior later in life. Finally, we also examined the interplay between receptor variation and juvenile exposure to stress (applied from P14 to P21). Similar to receptor knockdown, juvenile exposure to stress led to increased anxiety phenotypes but did not exacerbate 5-HT1A knockdown-mediated anxiety levels. This work indicates that the effects of 5-HT1A autoreceptors on anxiety and social behaviors are developmentally mediated and suggests that natural variations in the expression of 5-HT1A may act during development to influence individual anxiety levels and contribute to susceptibility to anxiety disorders.


Assuntos
Transtornos de Ansiedade/genética , Transtornos de Ansiedade/metabolismo , Autorreceptores/deficiência , Receptor 5-HT1A de Serotonina/deficiência , Comportamento Social , Fatores Etários , Animais , Transtornos de Ansiedade/psicologia , Autorreceptores/genética , Predisposição Genética para Doença , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Receptor 5-HT1A de Serotonina/genética
2.
J Neurosci ; 28(24): 6258-63, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18550768

RESUMO

Muscarinic autoreceptors regulate cholinergic tone in the striatum. We investigated the functional consequences of genetic deletion of striatal muscarinic autoreceptors by means of electrophysiological recordings from either medium spiny neurons (MSNs) or cholinergic interneurons (ChIs) in slices from single M(4) or double M(2)/M(4) muscarinic acetylcholine receptor (mAChR) knock-out (-/-) mice. In control ChIs, the muscarinic agonist oxotremorine (300 nM) produced a self-inhibitory outward current that was mostly reduced in M(4)(-/-) and abolished in M(2)/M(4)(-/-) mice, suggesting an involvement of both M(2) and M(4) autoreceptors. In MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, muscarine caused a membrane depolarization that was prevented by the M(1) receptor-preferring antagonist pirenzepine (100 nM), suggesting that M(1) receptor function was unaltered. Acetylcholine has been involved in striatal long-term potentiation (LTP) or long-term depression (LTD) induction. Loss of muscarinic autoreceptor function is predicted to affect synaptic plasticity by modifying striatal cholinergic tone. Indeed, high-frequency stimulation of glutamatergic afferents failed to induce LTD in MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, as well as in wild-type mice pretreated with the M(2)/M(4) antagonist AF-DX384 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,1 1-dihydro-6H-pyrido[2,3b][1,4] benzodiazepin-6-one). Interestingly, LTD could be restored by either pirenzepine (100 nM) or hemicholinium-3 (10 microM), a depletor of endogenous ACh. Conversely, LTP induction did not show any difference among the three mouse strains and was prevented by pirenzepine. These results demonstrate that M(2)/M(4) muscarinic autoreceptors regulate ACh release from striatal ChIs. As a consequence, endogenous ACh drives the polarity of bidirectional synaptic plasticity.


Assuntos
Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Neurônios/fisiologia , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M4/deficiência , Acetilcolina/metabolismo , Animais , Autorreceptores/deficiência , Corpo Estriado/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos da radiação , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos
3.
Eur J Neurosci ; 19(4): 937-44, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15009141

RESUMO

Serotonin 5-HT1A and 5-HT1B receptors and the 5-HT transporter are key regulators of the serotoninergic neuronal phenotype. We show here that genetic deletion of any of these elements differentially regulates 5-HT neuronal number in rostral raphe cultures from E14 mice. Serotonin neuronal number was increased by almost four-fold and 1.8-fold in cultures from 5-HT1AR-/- and 5-HT1BR-/- mice, respectively. In contrast, the lack of serotonin transporter expression was associated with a 50% decrease in 5-HT neuronal number. In raphe cultures from the rat, BDNF and cAMP have been shown to up-regulate the neuronal serotoninergic phenotype through TrkB-dependent mechanisms [Rumajogee et al. (2002) J. Neurochem., 83, 1525-1528]. Similar tyrosine kinase-dependent up-regulating effects, in the absence of serotoninergic key-elements are reported here, on both 5-HT neuronal number and neurites length. However, the extents of BDNF-triggered and cAMP-triggered effects on serotoninergic neuritic length were approximately 1.5-fold higher in 5-HT1AR-/- mutants. These findings show that the up-regulatory mechanisms triggered by BDNF on serotoninergic neuronal number and neurite extension are different and that the latter are partially linked to 5-HT, probably through 5-HT1A autoreceptors. Together, these data suggest that serotonin autoreceptors, mainly 5-HT1A but also 5-HT1B, may be responsible for a tonic auto-inhibitory effect of 5-HT itself on the serotoninergic neuronal phenotype during embryonic development, particularly marked in the absence of the 5-HT transporter.


Assuntos
Adaptação Fisiológica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , AMP Cíclico/fisiologia , Glicoproteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras , Proteínas do Tecido Nervoso , Receptores de Serotonina/deficiência , Adaptação Fisiológica/efeitos dos fármacos , Animais , Autorreceptores/deficiência , Autorreceptores/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas de Transporte/genética , AMP Cíclico/farmacologia , Feminino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Gravidez , Receptores de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina
4.
Naunyn Schmiedebergs Arch Pharmacol ; 364(2): 117-30, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11534851

RESUMO

The function of presynaptic alpha2-autoreceptors was studied in the hippocampus, occipito-parietal cortex, atria and vas deferens of NMRI mice, mice in which the alpha2A/D-, the alpha2B- or alpha2c-adrenoceptor gene had been disrupted (alpha2A/DKO, alpha2BKO and alpha2CKO, respectively), and the wildtype mice from which the knockout animals had been generated. Tissue pieces were preincubated with 3H-noradrenaline and then superfused and stimulated electrically. The alpha2-adrenoceptor agonist medetomidine reduced the electrically evoked overflow of tritium in all tissues from all mouse strains (stimulation with single pulses or single high-frequency pulse trains, called POPs, i.e. pulse patterns leading to minimal autoinhibition). The effects of medetomidine did not differ in NMRI, wildtype, alpha2BKO and alpha2CKO mice but were greatly reduced in alpha2A/DKO brain preparations and to a lesser extent in alpha2A/DKO atria and vasa deferentia. Six drugs were tested as antagonists against medetomidine. Their pKd values indicated that the hippocampal and occipito-parietal alpha2-autoreceptors in NMRI and wildtype mice were alpha2D (the rodent variant of the alpha2A/D-adrenoceptor) whereas the atrial and vas deferens alpha2-autoreceptors in NMRI and wildtype mice could not be identified with a single alpha2 subtype. Deletion of the alpha2A/D gene changed the pKd values in all tissues so that they now reflected alpha2C properties, whereas deletion of the alpha2C gene changed the pKd values in atria and vasa deferentia so that they now had alpha2D properties (as they had in NMRI and wildtype brain preparations). Autoinhibition by released noradrenaline was created using trains of up to 64 pulses or up to 4 POPs, and the overflow-enhancing effect of the alpha2 antagonist rauwolscine was determined. Results did not differ, irrespective of whether preparations were obtained from NMRI, wildtype, alpha2BKO or alpha2CKO mice: the overflow of tritium elicited by p pulses or POPs was much smaller than p times the overflow elicited by a single pulse or POP, and rauwolscine greatly increased the evoked overflow. Results differed, however, in tissues taken from alpha2A/DKO mice: in these tissues, the overflow of tritium elicited by p pulses or POPs was close to p times the overflow elicited by a single pulse or POP, and rauwolscine did not increase the evoked overflow of tritiumor increased it only marginally. When a greater degree of autoinhibition was produced in atria and vasa deferentia by stimulation with 120 pulses, both disruption of the alpha2A/D gene and disruption of the alpha2C gene but not disruption of the alpha2B gene attenuated the overflow-enhancing effects of phentolamine and rauwolscine. In NMRI and wildtype atria and vasa deferentia, the relative potencies of phentolamine and rauwolscine at enhancing the evoked overflow were not easily compatible with a single alpha2 subtype. In alpha2A/DKO atria and vasa deferentia, the relative potencies of phentolamine and rauwolscine indicated that the autoinhibition-mediating receptors were alpha2C, whereas in alpha2CKO atria and vasa deferentia the relative potencies indicated that the autoinhibition-mediating receptors were alpha2D. It is concluded that alpha2-autoreceptors function identically in NMRI mice and the wildtype mice from which the receptor-deficient animals had been generated. There is no evidence from the experiments for any contribution of alpha2B-adrenoceptors to autoreceptor function. The main presynaptic alpha2-autoreceptors are alpha2A/D, both as sites of action of exogenous agonists and as sites of action of previously released noradrenaline. However, there are in addition non-alpha2A/D-, probably alpha2C-autoreceptors. They are less prominent in mediating the inhibitory effects of exogenous agonists and the negative feedback effect of released noradrenaline. They operate not only after deletion of the alpha2A/D-adrenoceptors but also in normal (NMRI, wildtype) mice without gene deletion.


Assuntos
Autorreceptores/deficiência , Autorreceptores/genética , Receptores Adrenérgicos alfa 2/deficiência , Receptores Adrenérgicos alfa 2/genética , Agonistas de Receptores Adrenérgicos alfa 2 , Antagonistas de Receptores Adrenérgicos alfa 2 , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Autorreceptores/agonistas , Autorreceptores/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norepinefrina/metabolismo , Técnicas de Cultura de Órgãos , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...