Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
BMC Plant Biol ; 24(1): 530, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862888

RESUMO

BACKGROUND: Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged 'LongYan No. 3' (A. sativa) and 'BaiYan No. 2' (A. nuda) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats. RESULTS: In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. 'LongYan No. 3' seeds, aged for 24-96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the 'BaiYan No. 2'. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of 'LongYan No. 3' seed vitality and value. Conversely, 'BaiYan No. 2' seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum. CONCLUSIONS: ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. 'LongYan No. 3' seeds were more severely damaged under artificial aging than 'BaiYan No. 2' seeds, highlighting their heightened susceptibility to aging effects.


Assuntos
Avena , Sementes , Avena/fisiologia , Avena/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Temperatura Alta , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Germinação/fisiologia , Antioxidantes/metabolismo
2.
Clin Nutr ESPEN ; 53: 144-150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657906

RESUMO

BACKGROUND AND AIM: The effect of polyphenol-rich diets or supplements on cognitive function remains a contentious topic. The objective of this study was to investigate the effects of Avena sativa (oat extracts) on cognitive function among healthy adults. METHODS: A structured literature search was undertaken using PubMed, Web of Science, and Scopus from the database's establishment until March 17, 2022. Data on cognitive function, regarding accuracy and speed of performance, were gathered from randomized controlled trials (RCTs) that investigated the acute or chronic effects of Avena sativa in healthy subjects. The Cochrane Collaboration risk-of-bias tool was used to assess the quality of included studies. RESULTS: We included six RCTs, of which three were crossover designs, with a total of 287 individuals. Four studies investigated the acute effect of Avena sativa, while two investigated its chronic effect. Acute ingestion of Avena sativa appeared to positively influence the accuracy and speed of performance. While short-term chronic supplementation resulted in a significant improvement in cognitive function, long-term chronic supplementation did not. Overall, the evidence was of average quality. CONCLUSION: Acute supplementation with Avena sativa may improve cognitive function in healthy volunteers. Given the small number of trials included and the disparity of the intervention dose, the conclusions of this study should be interpreted with caution. More high-quality, long-term studies are warranted.


Assuntos
Avena , Cognição , Adulto , Humanos , Avena/fisiologia , Cognição/fisiologia , Dieta , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681841

RESUMO

Crown rust, caused by Puccinia coronata f. sp. avenae, is one of the most destructive fungal diseases of oat worldwide. Growing disease-resistant oat cultivars is the preferred method of preventing the spread of rust and potential epidemics. The object of the study was Pc50-5, a race-specific seedling crown rust resistant gene, highly effective at all growth stages, selected from the differential line Pc50 (Avena sterilis L. CW 486-1 × Pendek). A comparison of crown rust reaction as well as an allelism test showed the distinctiveness of Pc50-5, whereas the proportions of phenotypes in segregating populations derived from a cross with two crown rust-susceptible Polish oat cultivars, Kasztan × Pc50-5 and Bingo × Pc50-5, confirmed monogenic inheritance of the gene, indicating its usefulness in oat breeding programs. Effective gene introgression depends on reliable gene identification in the early stages of plant development; thus, the aim of the study was to develop molecular markers that are tightly linked to Pc50-5. Segregating populations of Kasztan × Pc50-5 were genotyped using DArTseq technology based on next-generation Illumina short-read sequencing. Markers associated with Pc50-5 were located on chromosome 6A of the current version of the oat reference genome (Avena sativa OT3098 v2, PepsiCo) in the region between 434,234,214 and 440,149,046 bp and subsequently converted to PCR-based SCAR (sequence-characterized amplified region) markers. Furthermore, 5426978_SCAR and 24031809_SCAR co-segregated with the Pc50-5 resistance allele and were mapped to the partial linkage group at 0.6 and 4.0 cM, respectively. The co-dominant 58163643_SCAR marker was the best diagnostic and it was located closest to Pc50-5 at 0.1 cM. The newly discovered, very strong monogenic crown rust resistance may be useful for oat improvement. DArTseq sequences converted into specific PCR markers will be a valuable tool for marker-assisted selection in breeding programs.


Assuntos
Avena/genética , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Puccinia , Avena/metabolismo , Avena/fisiologia , Cromossomos de Plantas , Micoses , Melhoramento Vegetal , Doenças das Plantas
4.
J Plant Physiol ; 260: 153396, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713940

RESUMO

Plant organs that are exposed to continuous unilateral light reach in the steady-state a photogravitropic bending angle that results from the mutual antagonism between the photo- and gravitropic responses. To characterize the interaction between the two tropisms and their quantitative relationship we irradiated seedlings of Arabidopsis thaliana that were inclined at various angles and determined the fluence rates of unilateral blue light required to compensate the gravitropism of the inclined hypocotyls. We found the compensating fluence rates to increase with the tangent of the inclination angles (0° < γ < 90° or max. 120°) and decrease with the cotangent (90°< γ < 180° or max. 120°of the inclination angles. The tangent dependence became also evident from analysis of previous data obtained with Avena sativa and the phycomycete fungus, Phycomyces blakesleeanus. By using loss-of function mutant lines of Arabidopsis, we identified EHB1 (enhanced bending 1) as an essential element for the generation of the tangent and cotangent relationships. Because EHB1 possesses a C2-domain with two putative calcium binding sites, we propose that the ubiquitous calcium dependence of gravi- and phototropism is in part mediated by Ca2+-bound EHB1. Based on a yeast-two-hybrid analysis we found evidence that EHB1 does physically interact with the ARF-GAP protein AGD12. Both proteins were reported to affect gravi- and phototropism antagonistically. We further showed that only AGD12, but not EHB1, interacts with its corresponding ARF-protein. Evidence is provided that AGD12 is able to form homodimers as well as heterodimers with EHB1. On the basis of these data we present a model for a mechanism of early tropism events, in which Ca2+-activated EHB1 emerges as the central processor-like element that links the gravi- and phototropic transduction chains and that generates in coordination with NPH3 and AGD12 the tangent / cotangent algorithm governing photogravitropic equilibrium.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Gravitropismo/genética , Fototropismo/genética , Phycomyces/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Hipocótilo/metabolismo , Luz , Phycomyces/genética , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação
5.
Plant Physiol Biochem ; 160: 315-328, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33545609

RESUMO

Soil salinity is among the crucial factors that impact on crop productivity, including oat (Avena sativa L.). Herein, we used two distinct oat cultivars with varied salt tolerance levels to unravel adaptive responses to salt stress by metabolomic and transcriptomic characterization. Metabolomic profiling revealed 201 metabolites, including saccharides, amino acids, organic acids, and secondary metabolites. The levels of most saccharides and amino acids were elevated in Baiyan 2 (BY2) as well as in Baiyan 5 (BY5) exposed to salt stress. In the tolerant cultivar BY2 exposed to 150 mM NaCl, concentrations of most of the metabolites increased significantly, with sucrose increased by 38.34-fold, Sophorose increased by 314.15-fold and Isomaltose 2 increased by 25.76-fold. In the sensitive cultivar BY5, the concentrations of most metabolites increased after the plant was exposed to 150 mM NaCl but decreased after the plant was exposed to 300 mM NaCl. Transcriptomic analysis revealed that gene expressions in BY5 were significantly affected under exposure to 300 mM NaCl (34040 genes up-regulated and 14757 genes down-regulated). Assessment of metabolic pathways as well as KEGG enrichment revealed that salt stress interferes with the biosynthesis of two oat cultivars, including capacity expenditure and sugar metabolism. Most of the BY2 genes enhanced energy consumption (for example, glycolysis) and biosynthesis (for instance, starch and sugar metabolism) under salt stress. In contrast, genes in BY5 were found to be down-regulated, leading to the inhibition of energy consumption and biosynthesis, which may also be attributed to salt sensitivity in BY5. In addition, the modified Na+/K+ transporter genes expression is associated with the predominant ionic responses in BY2, which leads low concentration of Na+ and high K+ when exposed to high salt situations. These findings suggest that the varied defensive capacities of these two oat cultivars in response to salt stress are due to their variations in energy-expenditure strategy, synthesis of energy substances and ion transport in roots. Our present study offers a crucial reference for oat cultivation under saline soil.


Assuntos
Avena , Metaboloma , Tolerância ao Sal , Transcriptoma , Avena/genética , Avena/fisiologia , Regulação da Expressão Gênica de Plantas , Salinidade
6.
Plant Signal Behav ; 16(2): 1845934, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356830

RESUMO

Oat (Avena sativa L.) is an important crop in northwestern China. Drought stress is the most significant factor affecting oat yield. In the present study, we explored the changes that occur in oats under drought stress conditions at a global genomic level. RNA sequencing was performed using 15-day-old oat seedlings. The differentially expressed transcripts were identified, and their related functions and pathways were investigated. In total, 1,065 unigenes were differentially expressed in oats under drought stress conditions. Of these, 386 unigenes were upregulated and 679 were downregulated. The perturbed transcripts were closely related to the biosynthesis of secondary metabolites, plant hormone signal transduction, and biosynthesis of antibiotics. DN50483_c0_g1_i3, which was annotated as acetyl-CoA carboxylase, was a significant node in the protein-protein interaction network. Biosynthesis of antibiotics and secondary metabolites may be involved in the drought stress response mechanisms of oats. The perturbed transcripts may provide targets for improving plant stress responses.


Assuntos
Avena/fisiologia , Secas , Plântula/fisiologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Avena/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Plântula/genética , Análise de Sequência de RNA/métodos
7.
BMC Plant Biol ; 20(1): 104, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138669

RESUMO

BACKGROUND: Loss of vigor caused by seed aging adversely affects agricultural production under natural conditions. However, priming is an economical and effective method for improving the vigor of aged seeds. The objective of this study was to test the effectiveness of exogenous ascorbic acid (ASC) and glutathione (GSH) priming in the repairing of aged oat (Avena sativa) seeds, and to test the hypothesis that structural and functional systems in mitochondria were involved in this process. RESULTS: Oat seeds were artificially aged for 20 days at 45 °C, and were primed with solutions (1 mmol L- 1) of ASC, GSH, or ASC + GSH at 20 °C for 0.5 h before or after their aging. Seed germination, antioxidant enzymes in the ASC-GSH cycle, cytochrome c oxidase (COX) and mitochondrial malate dehydrogenase (MDH) activities, and the mitochondrial ultrastructures of the embryonic root cells were markedly improved in aged oat seeds through post-priming with ASC, GSH, or ASC + GSH, while their malondialdehyde and H2O2 contents decreased significantly (P < 0.05). CONCLUSION: Our results suggested that priming with ASC, GSH, or ASC + GSH after aging could effectively alleviate aging damage in oat seeds, and that the role of ASC was more effective than GSH, but positive effects of post-priming with ASC and GSH were not superior to post-priming with ASC in repairing aging damage of aged oat seeds. However, pre-priming with ASC, GSH, or ASC + GSH was not effective in oat seeds, suggesting that pre-priming with ASC, GSH, or ASC + GSH could not inhibit the occurrence of aging damage in oat seeds.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Avena/fisiologia , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Avena/efeitos dos fármacos , Glutationa/administração & dosagem , Mitocôndrias/metabolismo , Sementes/efeitos dos fármacos , Sementes/fisiologia
8.
Sci Rep ; 8(1): 16248, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389990

RESUMO

Salinity is one of the major abiotic factors that affect productivity in oat. Here, we report a comparison of the transcriptomes of two hexaploid oat cultivars, 'Hanyou-5' and 'Huazao-2', which differ with respect to salt tolerance, in seedlings exposed to salt stress. Analysis of the assembled unigenes from the osmotically stressed and control libraries of 'Hanyou-5' and 'Huazao-2' showed that the expression of 21.92% (36,462/166,326) of the assembled unigenes was differentially regulated in the two cultivars after different durations of salt stress. Bioinformatics analysis showed that the main functional categories enriched in these DEGs were "metabolic process", "response to stresses", "plant hormone signal transduction", "MAPK signalling", "oxidative phosphorylation", and the plant-pathogen interaction pathway. Some regulatory genes, such as those encoding MYB, WRKY, bHLH, and zinc finger proteins, were also found to be differentially expressed under salt stress. Physiological measurements also detected significant differences in the activities of POD (76.24 ± 1.07 Vs 81.53 ± 1.47 U/g FW) in the two genotypes in response to osmotic stress. Furthermore, differential expression of 18 of these genes was successfully validated using RNA-seq and qRT-PCR analyses. A number of stress-responsive genes were identified in both cultivars, and candidate genes with potential roles in the adaptation to salinity were proposed.


Assuntos
Avena/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Solo/química , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genótipo , Raízes de Plantas/fisiologia , Salinidade , Plântula/fisiologia
9.
Sci Rep ; 8(1): 8242, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844453

RESUMO

Genotype selection based on multiple traits is a key issue in plant breeding; it has been dependent on setting a subjective weight for each trait in index selection and a subjective truncation point for each trait in independent culling, and the weights and truncation points can be highly subjective. In this paper we proposed and demonstrated a novel approach for genotype selection based on multiple traits, the genotype by yield*trait (GYT) biplot, where "trait" can be any breeding objective other than yield; it may be an agronomic trait, a grain quality, processing quality, or nutritional quality trait, or a disease resistance. The GYT biplot ranks genotypes based on their levels in combining yield with other target traits and at the same time shows their trait profiles, i.e., their strengths and weaknesses. Compared to existing methods, this approach is graphical, objective, effective, and straightforward. Underlying the GYT biplot approach is the paradigm shift that genotypes should be evaluated by their levels in combining yield with other traits as opposed to by their levels in individual traits. An oat dataset from multi-year multi-locations trials was used to demonstrate the GYT biplot approach.


Assuntos
Avena/fisiologia , Genótipo , Herança Multifatorial/genética , Melhoramento Vegetal/métodos , Seleção Genética , Grão Comestível , Fenótipo , Característica Quantitativa Herdável
10.
Pest Manag Sci ; 74(8): 1759-1768, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29688592

RESUMO

Herbicide-resistant weeds, especially those with resistance to multiple herbicides, represent a growing worldwide threat to agriculture and food security. Natural selection for resistant genotypes may act on standing genetic variation, or on a genetic and physiological background that is fundamentally altered because of stress responses to sublethal herbicide exposure. Stress-induced changes include DNA mutations, epigenetic alterations, transcriptional remodeling, and protein modifications, all of which can lead to herbicide resistance and a wide range of pleiotropic effects. Resistance selected in this manner is termed systemic acquired herbicide resistance, and the associated pleiotropic effects are manifested as a suite of constitutive transcriptional and post-translational changes related to biotic and abiotic stress adaptation, representing the evolutionary signature of selection. This phenotype is being investigated in two multiple herbicide-resistant populations of the hexaploid, self-pollinating weedy monocot Avena fatua that display such changes as well as constitutive reductions in certain heat shock proteins and their transcripts, which are well known as global regulators of diverse stress adaptation pathways. Herbicide-resistant populations of most weedy plant species exhibit pleiotropic effects, and their association with resistance genes presents a fertile area of investigation. This review proposes that more detailed studies of resistant A. fatua and other species through the lens of plant evolution under stress will inform improved resistant weed prevention and management strategies. © 2018 Society of Chemical Industry.


Assuntos
Avena/fisiologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/fisiologia , Seleção Genética , Avena/efeitos dos fármacos , Avena/genética , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética
11.
Microbiol Res ; 206: 25-32, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146257

RESUMO

Plant growth and yield is adversely affected by soil salinity. Salt tolerant plant growth-promoting rhizobacteria (PGPR) strain IG 3 was isolated from rhizosphere of wheat plants. The isolate IG 3 was able to grow in presence of NaCl ranging from 0 to 20% in Luria Bertani medium. The present study was planned to evaluate the role of inoculation of PGPR strain IG 3 and its efficacy in augmenting salt tolerance in oat (Avena sativa) under NaCl stress (100mM). The physiological parameter such as shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were remarkably higher in IG 3 inoculated plants in comparison to un-inoculated plants under NaCl stress. Similarly, the biochemical parameters such as proline content, electrolyte leakage and malondialdehyde (MDA) content and activities of antioxidant enzymes were analyzed and found to be notably lesser in IG 3 inoculated oat plants in contrast to un-inoculated plants under salt stress. Inoculation of IG 3 strain to oat seedlings under salt stress positively modulated the expression profile of rbcL and WRKY1 genes. Root colonization of root surface and interior was demonstrated using scanning electron microscopy and tetrazolium staining, respectively. Due these outcomes, it could be implicated that inoculation of PGPR strain IG 3 enhanced plant growth under salt stress condition. This study demonstrates that PGPR play an imperative function in stimulating salt tolerance in plants and can be used as biofertilizer to enhance growth of crops in saline areas.


Assuntos
Avena/microbiologia , Klebsiella/fisiologia , Desenvolvimento Vegetal , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/fisiologia , Plântula/efeitos dos fármacos , Plântula/microbiologia , Cloreto de Sódio/farmacologia , Avena/química , Avena/efeitos dos fármacos , Avena/fisiologia , Clorofila/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas/genética , Índia , Klebsiella/isolamento & purificação , Microscopia Eletrônica de Varredura , Estresse Oxidativo/fisiologia , Peroxidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Rizosfera , Salinidade , Plantas Tolerantes a Sal/microbiologia , Plântula/citologia , Plântula/fisiologia , Solo/química , Microbiologia do Solo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia
12.
J Plant Physiol ; 220: 105-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29169105

RESUMO

Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.


Assuntos
Avena/efeitos dos fármacos , Resistência a Herbicidas , Herbicidas/farmacologia , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma , Aclimatação , Avena/fisiologia , Oxirredução , Fosforilação Oxidativa , Proteínas de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia
13.
Environ Monit Assess ; 189(11): 591, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29086096

RESUMO

The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg-1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg-1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.


Assuntos
Avena/fisiologia , Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Sorghum/fisiologia , Biodegradação Ambiental , Grão Comestível/química , Monitoramento Ambiental , Metais Pesados/química , Solo/química , Poluentes do Solo/química
14.
Pest Manag Sci ; 73(1): 167-173, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27038305

RESUMO

BACKGROUND: Biotypes of Avena fatua resistant to ACCase-inhibiting herbicides have been reported in the States of Baja California (BC) and Sonora (SON), Mexico. We hypothesised that resistant biotypes present in SON (Valle de Hermosillo and Valle del Yaqui) are derived from a resistant population from BC (Valle de Mexicali) via gene flow through the transport and exchange of contaminated wheat seed. This study aimed to determine (1) the resistance of A. fatua to ACCase-inhibiting herbicides in populations from BC and SON, (2) the mutation at the site of action and (3) the genetic structure and gene flow among populations. RESULTS: DNA sequencing showed that all biotypes shared the same mutation (Leu × Ile at codon 1781). Microsatellites showed evidence of a genetic bottleneck in SON, and spatial analysis of molecular variance grouped one biotype from the Valle de Mexicali with two biotypes from the Valle de Hermosillo. Migration analysis suggested gene flow from the Valle de Mexicali to the Valle de Hermosillo, but not to the Valle del Yaqui. CONCLUSIONS: The presence of resistant biotypes of A. fatua in the Valle de Hermosillo, SON, are likely derived from seeds from BC, possibly through the transport of contaminated wheat seeds. © 2016 Society of Chemical Industry.


Assuntos
Avena/fisiologia , Fluxo Gênico , Espécies Introduzidas , Dispersão de Sementes , Resistência a Herbicidas/genética , Repetições de Microssatélites , Análise de Sequência de DNA , Triticum/fisiologia , Controle de Plantas Daninhas/métodos
15.
J Plant Physiol ; 199: 52-66, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27302006

RESUMO

The aim of this work was to investigate the relationships between the chemical composition of oat grains and the tolerance to oxidative stress of oat genotypes. The studies were based on the results of biochemical analyses and both EPR and Raman spectroscopies on whole grains and their parts (embryo, endosperm, seed coat) originating from oat genotypes with different sensitivities to stress. We found that the amounts of fats and especially unsaturated fatty acids, proteins rich in glutamic acid and glycine, as well as phenolics and tocopherols were higher in grains of the tolerant genotype. Moreover, fats and proteins were distributed not only in embryos, but also in endosperms. The grains of tolerant genotypes exhibited high antioxidant activity and contained greater amounts of ß-glucan. EPR data pointed to higher concentrations of various kinds of stable organic radicals (semiquinone, tyrosyl and carbon-centered radicals) in whole grains (and their parts) of sensitive genotypes. EPR spectra revealed the character of interactions of paramagnetic transition metal ions Fe(III) and Mn(II) with organic and inorganic structures of grains. The quantitative EPR measurements showed the dependence between the amount of radical species and the content of transition metal ions, mainly Fe(III) bonded to inorganic structures.


Assuntos
Avena/química , Sementes/química , Aminoácidos/análise , Avena/genética , Avena/fisiologia , Secas , Endosperma/química , Endosperma/genética , Endosperma/fisiologia , Ácidos Graxos/análise , Compostos Férricos/química , Genótipo , Estresse Oxidativo , Sementes/genética , Sementes/fisiologia , Análise Espectral Raman
16.
J Plant Physiol ; 199: 100-110, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27302011

RESUMO

The relationship between the Photochemical Reflectance Index (PRI), Normalized Difference Vegetation Index (NDVI) and chlorophyll fluorescence along senescence was investigated in this work. Reflectance and radiance measurements were performed at canopy level in grass species presenting different photosynthetic metabolism: Avena sativa (C3) and Setaria italica (C4), at different stages of the natural senescence process. Sun induced-chlorophyll fluorescence at 760nm (SIF760) and the apparent fluorescence yield (SIF760/a, with a=irradiance at time of measurement) were extracted from the radiance spectra of canopies using the Fraunhofer Line Discrimination-method. The photosynthetic parameters derived from Kautsky kinetics and pigment content were also calculated at leaf level. Whilst stand level NDVI patterns were related to changes in the structure of canopies and not in pigment content, stand level PRI patterns suggested changes both in terms of canopy and of pigment content in leaves. Both SIF760/a and ΦPSII decreased progressively along senescence in both species. A strong increment in NPQ was evident in A. sativa while in S. italica NPQ values were lower. Our most important finding was that two chlorophyll fluorescence signals, ΦPSII and SIF760/a, correlated with the canopy PRI values in the two grasses assessed, even when tissues at different ontogenic stages were present. Even though significant changes occurred in the Total Chlr/Car ratio along senescence in both studied species, significant correlations between PRI and chlorophyll fluorescence signals might indicate the usefulness of this reflectance index as a proxy of photosynthetic RUE, at least under the conditions of this study. The relationships between stand level PRI and the fluorescence estimators (ΦPSII and SIF760/a) were positive in both cases. Therefore, an increase in PRI values as in the fluorescence parameters would indicate higher RUE.


Assuntos
Avena/fisiologia , Clorofila , Fotossíntese , Setaria (Planta)/fisiologia , Avena/efeitos da radiação , Clorofila/metabolismo , Fluorescência , Processos Fotoquímicos , Pigmentos Biológicos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Setaria (Planta)/efeitos da radiação , Fatores de Tempo
17.
Ecology ; 97(5): 1307-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27349106

RESUMO

The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacent to the roots of wild oat (A vena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. These results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil.


Assuntos
Avena/fisiologia , Bactérias/isolamento & purificação , Raízes de Plantas/fisiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biomassa , California , Clima , DNA Bacteriano/genética , Pradaria , Raízes de Plantas/microbiologia
18.
Nat Commun ; 7: 11545, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173885

RESUMO

It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants.


Assuntos
Avena/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdução de Sinal Luminoso/fisiologia , Fitocromo A/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Mutação , Fosforilação/fisiologia , Domínios Proteicos/fisiologia
19.
Plant Physiol Biochem ; 106: 253-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27209215

RESUMO

Vineyard sandy acid soils from South Brazil have experienced heavy metal contamination due to replacement of copper (Cu)-based by zinc (Zn)-based products to control foliar diseases. Thus, we evaluate physiological and nutritional status of black oat (Avena strigosa Schreb.), a common interrow crop in vineyards from this region. Soil was collected in a natural field from Santana do Livramento, in Rio Grande do Sul, the southernmost state of Brazil. Black oat was cultivated for 30 days in a greenhouse with application of 0, 30, and 60 mg Cu kg(-1) combined with 0, 15, 30, 60, 120, and 180 mg Zn kg(-1). After the trial period, dry matter accumulation of roots and shoots, Cu and Zn contents in roots and shoots, chlorophyll a fluorescence, photosynthetic pigments and catalase (CAT, EC 1.11.1.6) and peroxidase (POD, EC 1.11.1.7) activity were determined. Cu and Zn toxicity was evidenced by the decrease in plant growth of black oat as well as by the decrease of photochemical efficiency associated with the decrease in photosynthetic pigment content, especially with the highest doses of Cu and Zn. Furthermore, the activity of antioxidant enzymes (CAT and POD) was increased in intermediate doses of Zn, indicating the activation of the antioxidant system, but the stress condition in treatments with high levels of Cu and Zn was not reversed.


Assuntos
Avena/crescimento & desenvolvimento , Avena/fisiologia , Cobre/farmacologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Solo/química , Zinco/farmacologia , Análise de Variância , Antioxidantes/metabolismo , Avena/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Biomassa , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
20.
Plant Physiol Biochem ; 103: 199-207, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27002244

RESUMO

Soils used for the cultivation of grapes generally have a long history of copper (Cu) based fungicide applications. As a result, these soils can accumulate Cu at levels that are capable of causing toxicity in plants that co-inhabit the vineyards. The aim of the present study was to evaluate growth parameters and oxidative stress in black oat plants grown in vineyard soils contaminated with high levels of Cu. Soil samples were collected from the Serra Gaúcha and Campanha Gaúcha regions, which are the main wine producing regions in the state of Rio Grande do Sul, in southern Brazil. Experiments were conducted in a greenhouse in 2009, with soils containing Cu concentrations from 2.2 to 328.7 mg kg(-1). Evaluated parameters included plant root and shoot dry matter, Cu concentration in the plant's tissues, and enzymatic and non-enzymatic biochemical parameters related to oxidative stress in the shoots of plants harvested 15 and 40 days after emergence. The Cu absorbed by plants predominantly accumulated in the roots, with little to no translocation to the shoots. Even so, oat plants showed symptoms of toxicity when grown in soils containing high Cu concentrations. The enzymatic and non-enzymatic antioxidant systems of oat plants were unable to reverse the imposed oxidative stress conditions.


Assuntos
Avena/efeitos dos fármacos , Cobre/farmacologia , Fungicidas Industriais/farmacologia , Poluentes do Solo/farmacologia , Antioxidantes/metabolismo , Avena/química , Avena/fisiologia , Brasil , Cobre/metabolismo , Fungicidas Industriais/metabolismo , Especificidade de Órgãos , Estresse Oxidativo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Solo/química , Poluentes do Solo/metabolismo , Vitis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...