Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.768
Filtrar
1.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932181

RESUMO

High pathogenicity avian influenza viruses (HPAIVs) cause high morbidity and mortality in poultry species. HPAIV prevalence means high numbers of infected wild birds could lead to spill over events for farmed poultry. How these pathogens survive in the environment is important for disease maintenance and potential dissemination. We evaluated the temperature-associated survival kinetics for five clade 2.3.4.4 H5Nx HPAIVs (UK field strains between 2014 and 2021) incubated at up to three temperatures for up to ten weeks. The selected temperatures represented northern European winter (4 °C) and summer (20 °C); and a southern European summer temperature (30 °C). For each clade 2.3.4.4 HPAIV, the time in days to reduce the viral infectivity by 90% at temperature T was established (DT), showing that a lower incubation temperature prolonged virus survival (stability), where DT ranged from days to weeks. The fastest loss of viral infectivity was observed at 30 °C. Extrapolation of the graphical DT plots to the x-axis intercept provided the corresponding time to extinction for viral decay. Statistical tests of the difference between the DT values and extinction times of each clade 2.3.4.4 strain at each temperature indicated that the majority displayed different survival kinetics from the other strains at 4 °C and 20 °C.


Assuntos
Vírus da Influenza A , Influenza Aviária , Temperatura , Animais , Influenza Aviária/virologia , Influenza Aviária/mortalidade , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/fisiologia , Cinética , Aves Domésticas/virologia , Animais Selvagens/virologia , Aves/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/mortalidade
2.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932187

RESUMO

In 2023, South Africa continued to experience sporadic cases of clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) in coastal seabirds and poultry. Active environmental surveillance determined that H5Nx, H7Nx, H9Nx, H11Nx, H6N2, and H12N2, amongst other unidentified subtypes, circulated in wild birds and ostriches in 2023, but that H5Nx was predominant. Genome sequencing and phylogenetic analysis of confirmed H5N1 HPAI cases determined that only two of the fifteen sub-genotypes that circulated in South Africa in 2021-2022 still persisted in 2023. Sub-genotype SA13 remained restricted to coastal seabirds, with accelerated mutations observed in the neuraminidase protein. SA15 caused the chicken outbreaks, but outbreaks in the Paardeberg and George areas, in the Western Cape province, and the Camperdown region of the KwaZulu-Natal province were unrelated to each other, implicating wild birds as the source. All SA15 viruses contained a truncation in the PB1-F2 gene, but in the Western Cape SA15 chicken viruses, PA-X was putatively expressed as a novel isoform with eight additional amino acids. South African clade 2.3.4.4b H5N1 viruses had comparatively fewer markers of virulence and pathogenicity compared to European strains, a possible reason why no spillover to mammals has occurred here yet.


Assuntos
Aves , Surtos de Doenças , Genótipo , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , África do Sul/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Aves/virologia , Galinhas/virologia , Aves Domésticas/virologia , Genoma Viral , Virulência , Animais Selvagens/virologia , Neuraminidase/genética , Proteínas Virais/genética
3.
World J Microbiol Biotechnol ; 40(8): 237, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853194

RESUMO

Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.


Assuntos
Biodegradação Ambiental , Glycine max , Óleos de Plantas , Aves Domésticas , Microbiologia do Solo , Poluentes do Solo , Solo , Animais , Poluentes do Solo/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Óleos de Plantas/metabolismo , Solo/química , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento , Bactérias/metabolismo , Germinação/efeitos dos fármacos , Resíduos Industriais
4.
PLoS Negl Trop Dis ; 18(6): e0012241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833441

RESUMO

Campylobacteriosis disproportionately affects children under five in low-income countries. However, epidemiological and antimicrobial resistance (AMR) information at the children-animal interface is lacking. We hypothesized that Campylobacter is a major cause of enteritis in children in Ethiopia, and contact with animals is a potential source of transmission. The objective of the study was to determine Campylobacter occurrence and its AMR in children under five with diarrhea, backyard farm animals, and companion pets. Stool from 303 children and feces from 711 animals were sampled. Campylobacter was isolated through membrane filtration on modified charcoal cefoperazone deoxycholate agar plates under microaerobic incubation, and the technique showed to be feasible for use in regions lacking organized laboratories. Typical isolates were characterized with MALDI-TOF MS and multiplex PCR. Of 303 children, 20% (n = 59) were infected, with a higher proportion in the 6 to 11-month age group. Campylobacter occurred in 64% (n = 14) of dogs and 44% (n = 112) of poultry. Campylobacter jejuni was present in both a child and animal species in 15% (n = 23) of 149 households positive for Campylobacter. MICs using the gradient strip diffusion test of 128 isolates displayed resistance rates of 20% to ciprofloxacin and 11% to doxycycline. MICs of ciprofloxacin and doxycycline varied between C. coli and C. jejuni, with higher resistance in C. coli and poultry isolates. Campylobacter infection in children and its prevalent excretion from backyard poultry and dogs is a understudied concern. The co-occurrence of C. jejuni in animals and children suggest household-level transmission As resistance to ciprofloxacin and doxycycline was observed, therapy of severe campylobacteriosis should consider susceptibility testing. Findings from this study can support evidence-based diagnosis, antimicrobial treatment, and further investigations on the spread of AMR mechanisms for informed One Health intervention.


Assuntos
Animais Domésticos , Antibacterianos , Infecções por Campylobacter , Campylobacter , Diarreia , Fezes , Animais de Estimação , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/transmissão , Infecções por Campylobacter/epidemiologia , Pré-Escolar , Animais de Estimação/microbiologia , Humanos , Lactente , Antibacterianos/farmacologia , Diarreia/microbiologia , Diarreia/veterinária , Diarreia/epidemiologia , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , Masculino , Animais Domésticos/microbiologia , Feminino , Fezes/microbiologia , Cães , Etiópia/epidemiologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Recém-Nascido
5.
Pestic Biochem Physiol ; 202: 105960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879342

RESUMO

Dermanyssus gallinae, a worldwide pest in birds, has developed varying degrees of resistance to insecticides. The ATP-binding cassette (ABC) transporters are essential for the removal of xenobiotics from arthropods. However, our knowledge about ABC transporter proteins in D. gallinae is limited. Forty ABC transporters were identified in the transcriptome and genome of D. gallinae. The resistant population displayed an augmented metabolic rate for beta-cypermethrin compared to the susceptible group, with a remarkable increase in the content of ABC transporters. Verapamil was found able to increase the toxicity of beta-cypermethrin in the resistant population. Results from qRT-PCR analysis showed that eleven ABC transcripts were more highly expressed in the resistant population than the susceptible group at all stages of development, and beta-cypermethrin was observed to be able to induce the expression of DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 in D. gallinae. RNAi-mediated knockdown of the five genes was observed to increase the susceptibility of resistant mites to beta-cypermethrin. These results suggest that ABC transporters, DgABCA5, DgABCB4, DgABCD3, DgABCE1 and DgABCG5 genes, may be related to beta-cypermethrin resistance in D. gallinae. This research will serve as a foundation for further studies on mechanism of insecticide resistance, which could be beneficial for controlling D. gallinae.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ácaros , Piretrinas , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Piretrinas/farmacologia , Piretrinas/toxicidade , Ácaros/efeitos dos fármacos , Ácaros/genética , Inseticidas/farmacologia , Inseticidas/toxicidade , Aves Domésticas , Resistência a Inseticidas/genética
6.
BMC Infect Dis ; 24(1): 585, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867171

RESUMO

BACKGROUND: We investigated the presence of Chlamydia psittaci in poultry and the environment in live poultry wholesale markets in Changsha during 2021-2022 and conducted a phylogenetic analysis to understand its distribution in this market. METHODS: In total, 483 samples were analyzed using real-time polymerase chain reaction and 17 C. psittaci-positive samples using high-throughput sequencing, BLAST similarity, and phylogenetic analysis. RESULTS: Twenty-two out of 483 poultry and environmental samples were positive for C. psittaci (overall positivity rate: 4.55%) with no difference in positivity rates over 12 months. Chlamydia psittaci was detected at 11 sampling points (overall positivity rate: 27.5%), including chicken, duck, and pigeon/chicken/duck/goose shops, with pigeon shops having the highest positivity rate (46.67%). The highest positivity rates were found in sewage (12.5%), poultry fecal (7.43%), cage swab (6.59%), avian pharyngeal/cloacal swab (3.33%), and air (2.29%) samples. The ompA sequences were identified in two strains of C. psittaci, which were determined to bear genotype B using phylogenetic analysis. Thus, during monitoring, C. psittaci genotype B was detected in the poultry and environmental samples from the poultry wholesale market in Changsha. CONCLUSIONS: To address the potential zoonotic threat, C. psittaci monitoring programs in live poultry markets should be enhanced.


Assuntos
Chlamydophila psittaci , Filogenia , Doenças das Aves Domésticas , Aves Domésticas , Psitacose , Animais , Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Chlamydophila psittaci/classificação , China/epidemiologia , Psitacose/microbiologia , Psitacose/veterinária , Psitacose/epidemiologia , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Galinhas/microbiologia , Patos/microbiologia , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
7.
J Health Popul Nutr ; 43(1): 91, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907314

RESUMO

BACKGROUND: Observational studies have elucidated the associations between dietary factors and hypertension. Nevertheless, the exploration of these relationships using Mendelian randomization remains scarce currently. METHODS: The Mendelian randomization approach investigated the potential causal relationships between 16 dietary factors and hypertension. To achieve this, we identified genetic variants associated with these dietary factors by utilizing data from European-descent genome-wide association studies with a stringent significance threshold (P < 5 × 10 - 8). Subsequently, we obtained genetic associations with hypertension from the extensive FinnGen Study, encompassing 92,462 cases and 265,626 controls. Our primary analytical method was the inverse variance weighted method, and we also conducted assessments for heterogeneity and pleiotropy to ensure the robustness and reliability of our findings. RESULTS: The study revealed significant associations with hypertension risk for various dietary factors. Specifically, higher weekly alcohol consumption (OR: 1.53, 95% CI: 1.19-1.96) and more frequent alcohol intake (OR: 1.20, 95% CI: 1.08-1.33) were positively correlated with an increased risk of hypertension. Likewise, increased poultry intake (OR: 3.25, 95% CI: 1.83-5.78) and beef intake (OR: 1.80, 95% CI: 1.09-2.97) were also linked to a higher risk of hypertension. Conversely, there were protective factors associated with a decreased risk of hypertension. These included consuming salad and raw vegetables, dried fruits, cheese, and cereals. It is important to note that no evidence of pleiotropy was detected, underscoring the robustness of these findings. CONCLUSIONS: This study uncovered causal relationships between various dietary factors and hypertension risk. Specifically, alcohol consumption in terms of drinks per week and intake frequency, as well as poultry and beef intake, were causally associated with an elevated risk of hypertension. In contrast, consuming salad/raw vegetables, dried fruits, cheese, and cereals demonstrated an inverse causal association with hypertension, suggesting a potential protective effect.


Assuntos
Dieta , Estudo de Associação Genômica Ampla , Hipertensão , Análise da Randomização Mendeliana , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Dieta/estatística & dados numéricos , Consumo de Bebidas Alcoólicas/epidemiologia , Fatores de Risco , Masculino , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Verduras , Frutas , Aves Domésticas
8.
Sci Rep ; 14(1): 14199, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902400

RESUMO

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Assuntos
Animais Selvagens , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Aves Domésticas , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Animais Selvagens/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Surtos de Doenças/veterinária , Aves Domésticas/virologia , Aves/virologia , Estados Unidos/epidemiologia , Filogenia , Migração Animal
9.
J Vet Sci ; 25(3): e39, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38834509

RESUMO

IMPORTANCE: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.


Assuntos
Matadouros , Galinhas , Salmonella , Animais , República da Coreia/epidemiologia , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Salmonella/fisiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/epidemiologia , Filogenia , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão , Salmonelose Animal/epidemiologia , Microbiologia de Alimentos , Aves Domésticas/microbiologia , Sorogrupo , Carne/microbiologia
11.
Vet Rec ; 194(12): 457, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38874133
12.
Curr Microbiol ; 81(7): 179, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761211

RESUMO

Enormous aggregates of keratinous wastes are produced annually by the poultry and leather industries which cause environmental degradation globally. To combat this issue, microbially synthesized extracellular proteases known as keratinase are used widely which is effective in degrading keratin found in hair and feathers. In the present work, keratinolytic bacteria were isolated from poultry farm soil and feather waste, and various cultural conditions were optimized to provide the highest enzyme production for efficient keratin waste degradation. Based on the primary and secondary screening methods, the potent keratinolytic strain (HFS_F2T) with the highest enzyme activity 32.65 ± 0.16 U/mL was genotypically characterized by 16S rRNA sequencing and was confirmed as Bacillus velezensis HFS_F2T ON556508. Through one-variable-at-a-time approach (OVAT), the keratinase production medium was optimized with sucrose (carbon source), beef extract (nitrogen source) pH-7, inoculum size (5%), and incubation at 37 °C). The degree of degradation (%DD) of keratin wastes was evaluated after 35 days of degradation in the optimized keratinase production medium devoid of feather meal under submerged fermentation conditions. Further, the deteriorated keratin wastes were visually examined and the hydrolysed bovine hair with 77.32 ± 0.32% degradation was morphologically analysed through Field Emission Scanning Electron Microscopy (FESEM) to confirm the structural disintegration of the cuticle. Therefore, the current study would be a convincing strategy for reducing the detrimental impact of pollutants from the poultry and leather industries by efficient keratin waste degradation through the production of microbial keratinase.


Assuntos
Bacillus , Biodegradação Ambiental , Meios de Cultura , Plumas , Queratinas , Peptídeo Hidrolases , Bacillus/metabolismo , Bacillus/genética , Bacillus/enzimologia , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Animais , Plumas/metabolismo , Meios de Cultura/química , Aves Domésticas , RNA Ribossômico 16S/genética , Bovinos , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fermentação , Cabelo
13.
Microb Pathog ; 192: 106710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801865

RESUMO

Commercial broiler farms face challenges of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli transmitted from both vertical and horizontal routes. Understanding the dynamics of ESBL-E. coli transmission in compromised biosecurity settings of small-scale rural poultry farms is essential. This study aimed to elucidate the probable transmission pathways of ESBL-E. coli in such settings, employing phylogenetic analysis and molecular docking simulations to explore the catalytic properties of ß-lactamase variants. Sampling was conducted on a small-scale poultry farm in West Bengal, India, collecting 120 samples at three intervals during the broiler production cycle. E. coli isolates underwent resistance testing against eight antimicrobials, with confirmation of ESBL production. Genotypic analysis of ESBL genes and sequencing were performed, alongside molecular docking analyses and phylogenetic comparisons with publicly available sequences. Among 173 E. coli isolates, varying resistance profiles were observed, with complete resistance to cefixime and high resistance to amoxicillin and tetracycline. The incidence of ESBL-E. coli fluctuated over the production cycle, with dynamic changes in the prevalence of blaCTX-M-type and blaSHV-type genes. Phylogenetic analysis indicated partial clonal relationships with human clinical strains and poultry strains from the Indian subcontinent. Molecular docking confirmed the catalytic efficiencies of these ESBL variants. The study highlights probable vertical transmission of ESBL-E. coli and emphasizes drinking water as a potential source of horizontal transmission in small-scale poultry farms. Strict biosecurity measures could prevent the spread of antimicrobial-resistant bacteria in birds and their products in a small scale poultry farm.


Assuntos
Antibacterianos , Galinhas , Infecções por Escherichia coli , Escherichia coli , Fazendas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Filogenia , Doenças das Aves Domésticas , Aves Domésticas , beta-Lactamases , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/transmissão , Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Índia , Genótipo , Humanos , Simulação por Computador , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
Prev Vet Med ; 228: 106226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781693

RESUMO

The emergence of antimicrobial resistance (AMR) in both humans and animals is a growing health threat worldwide. Significant quantities of antibiotics are used in the livestock production sector, particularly in poultry farming to enhance growth and productivity. A cross-sectional study was conducted in three states of northwestern Nigeria to understand the level of knowledge, attitude, and practice of commercial poultry farmers on antimicrobial resistance. A total of 247 poultry farmers enrolled in the study comprising 100 (40.5 %) from Sokoto, 68 from Kebbi (27.5 %) and 79 (32.0 %) from Zamfara States. A significant number of the farmers have good knowledge of antimicrobial use (94.74 %), and the potential emergence of antimicrobial resistant bacteria due to irrational administration of antibiotics (83.0 %). Kruskal-Wallis test showed a significant difference in farmers' knowledge of AMR based on their educational qualification (p < 0.001) as farmers with bachelor's degree (BSc) being more knowledgeable than those with Ordinary National Diploma (OND) and those who only completed primary or secondary education. A statistically significant difference was also observed in the attitude of the participants based on State (p < 0.001) and educational qualification (p = 0.013). The study provided valuable insight into the understanding of antimicrobial resistance amongst commercial poultry farmers in the region. The findings necessitate the need for educational interventions and initiatives through enlightenment campaigns and deployment of extension workers to reach farmers with low level of education to further improve their attitudes and practice towards responsible use of antibiotics.


Assuntos
Criação de Animais Domésticos , Antibacterianos , Farmacorresistência Bacteriana , Fazendeiros , Conhecimentos, Atitudes e Prática em Saúde , Aves Domésticas , Nigéria , Animais , Estudos Transversais , Fazendeiros/psicologia , Humanos , Criação de Animais Domésticos/métodos , Antibacterianos/farmacologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Inquéritos e Questionários
15.
Toxicon ; 244: 107770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768829

RESUMO

Aflatoxins are toxic compounds produced by certain molds, primarily Aspergillus species, which can contaminate crops such as grains and nuts. These toxins pose a significant health risk to animals and humans. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to diminished growth and feed efficiency by disrupting nutrient absorption and metabolism in poultry. AFB1 can trigger apoptosis and inflammation, leading to a decline in immune function and changes in blood biochemistry in poultry. Recently, there has been growing interest in using microalgae as a natural antioxidant to mitigate the effects of aflatoxins in poultry diets. Microalgae have strong antioxidant, antimicrobial, anti-apoptotic, and anti-inflammatory properties, and adding them to aflatoxin-contaminated poultry diets has been shown to improve growth and overall health. This review investigates the potential of microalgae, such as Spirulina platensis, Chlorella vulgaris, and Enteromorpha prolifera, to mitigate AFB1 contamination in poultry feeds. These microalgae contain substantial amounts of bioactive compounds, including polysaccharides, peptides, vitamins, and pigments, which possess antioxidant, antimicrobial, and detoxifying properties. Microalgae can bind to aflatoxins and prevent their absorption in the gastrointestinal tract of poultry. They can also enhance the immune system of poultry, making them more resilient to the toxic effects of AFB1. Based on the data collected, microalgae have shown promising results in combating AFB1 contamination in poultry feeds. They can bind to aflatoxins, boost the immune system, and improve feed quality. This review emphasizes the harmful effects of AFB1 on poultry and the promising role of microalgae in reducing these effects.


Assuntos
Aflatoxina B1 , Ração Animal , Microalgas , Aves Domésticas , Animais , Aflatoxina B1/toxicidade , Contaminação de Alimentos/prevenção & controle , Antioxidantes/farmacologia , Spirulina , Aflatoxinas/toxicidade
17.
J Environ Sci Health B ; 59(7): 378-389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779902

RESUMO

Given extensive variability in feed composition, the absence of a dedicated DNA extraction kit for poultry feed underscores the need for an optimized extraction technique for reliable downstream sequencing analyses. This study investigates the impact of five DNA extraction techniques: Qiagen QIAamp DNA Stool Mini Kit (Qiagen), modified Qiagen with Lysing Matrix B (MQ), modified Qiagen with celite purification (MQC), polyethylene glycol (PEG), and 1-Day Direct. Genomic DNA amplification and Illumina MiSeq sequencing were conducted. QIIME2-2021.4 facilitated data analysis, revealing significant diversity and compositional differences influenced by extraction methods. Qiagen exhibited lower evenness and richness compared to other methods. 1-Day Direct and PEG enhanced bacterial diversities by employing bead beating and lysozyme. Despite similar taxonomic resolution, the Qiagen kit provides a rapid, consistent method for assessing poultry feed microbiomes. Modified techniques (MQ and MQC) improve DNA purification, reducing bias in commercial poultry feed samples. PEG and 1-Day Direct methods were effective but may require standardization. Overall, this study underscores the importance of optimized extraction techniques in poultry feed analysis, with potential implications for future standardization of effective methods.


Assuntos
Ração Animal , DNA Bacteriano , Microbiota , Aves Domésticas , Ração Animal/análise , Animais , Aves Domésticas/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Galinhas/microbiologia
18.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38816206

RESUMO

Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.


Assuntos
Endopeptidases , Genoma Viral , Especificidade de Hospedeiro , Fases de Leitura Aberta , Fagos de Salmonella , Fagos de Salmonella/genética , Animais , Endopeptidases/genética , Endopeptidases/metabolismo , Aves Domésticas/microbiologia , Salmonella/virologia , Salmonella/genética , Sítios de Ligação , Bovinos , Ligantes , Genômica , Águas Residuárias/microbiologia , Águas Residuárias/virologia
19.
J Virol ; 98(6): e0062624, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38747601

RESUMO

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , Cidade de Nova Iorque/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/classificação , Genótipo , Humanos , Aves/virologia , Sequenciamento Completo do Genoma , Animais Selvagens/virologia , Aves Domésticas/virologia , Influenza Humana/virologia , Influenza Humana/epidemiologia , Genoma Viral
20.
Virulence ; 15(1): 2359467, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38808732

RESUMO

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Infecções por Pasteurella , Pasteurella multocida , Filogenia , Pasteurella multocida/genética , Pasteurella multocida/classificação , Animais , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/transmissão , Elementos de DNA Transponíveis , Conjugação Genética , Evolução Molecular , Aves Domésticas/microbiologia , Prevalência , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...