Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 4439-4452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103135

RESUMO

Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.


Assuntos
Neoplasias do Colo , Pimpinella , Ratos , Animais , Antioxidantes/metabolismo , Azoximetano/toxicidade , Azoximetano/uso terapêutico , Pimpinella/química , Ratos Sprague-Dawley , Polissorbatos , Neoplasias do Colo/induzido quimicamente , Anti-Inflamatórios
2.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G318-G333, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489869

RESUMO

Currently available colorectal cancer (CRC) therapies have limited efficacy and severe adverse effects that may be overcome with the alternative use of natural compounds. We previously reported that panaxynol (PA), a bioactive component in American ginseng, possesses anticancer properties in vitro and suppresses murine colitis through its proapoptotic and anti-inflammatory properties. Because colitis is a predisposing factor of CRC and inflammation is a major driver of CRC, we sought to evaluate the therapeutic potential of PA in CRC. Azoxymethane-dextran sodium sulfate (AOM/DSS) mice (C57BL/6) were administered 2.5 mg/kg PA or vehicle 3 times/wk via oral gavage over 12 wk. PA improved clinical symptoms (P ≤ 0.05) and reduced tumorigenesis (P ≤ 0.05). This improvement may be reflective of PA's restorative effect on intestinal barrier function; PA upregulated the expression of essential tight junction and mucin genes (P ≤ 0.05) and increased the abundance of mucin-producing goblet cells (P ≤ 0.05). Given that macrophages play a substantial role in the pathogenesis of CRC and that we previously demonstrated that PA targets macrophages in colitis, we next assessed macrophages. We show that PA reduces the relative abundance of colonic macrophages within the lamina propria (P ≤ 0.05), and this was consistent with a reduction in the expression of important markers of macrophages and inflammation (P ≤ 0.05). We further confirmed PA's inhibitory effects on macrophages in vitro under CRC conditions (P ≤ 0.05). These results suggest that PA is a promising therapeutic compound to treat CRC and improve clinical symptoms given its ability to inhibit macrophages and modulate the inflammatory environment in the colon.NEW & NOTEWORTHY We report that panaxynol (PA) reduces colorectal cancer (CRC) by improving the colonic and tumor environment. Specifically, we demonstrate that PA improves crypt morphology, upregulates crucial tight junction and mucin genes, and promotes the abundance of mucin-producing goblet cells. Furthermore, PA reduces macrophages and associated inflammation, important drivers of CRC, in the colonic environment. This present study provides novel insights into the potential of PA as a therapeutic agent to ameliorate CRC tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Azoximetano/metabolismo , Azoximetano/farmacologia , Azoximetano/uso terapêutico , Macrófagos/metabolismo , Neoplasias Colorretais/metabolismo , Mucinas/metabolismo , Sulfato de Dextrana/farmacologia
3.
Biomed Pharmacother ; 164: 114973, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269808

RESUMO

The high prevalence of colorectal cancer (CRC) and its leading death causing rate have placed a considerable burden on patients and healthcare providers. There is a need for a therapy that has fewer adverse effects and greater efficiency. Zearalenone (ZEA), an estrogenic mycotoxin, has been demonstrated to exert apoptotic properties when administrated in higher doses. However, it is unclear whether such apoptotic effect remains valid in an in vivo setting. The current study aimed to investigate the effect of ZEA on CRC and its underlying mechanisms in the azoxymethane/ dextran sodium sulfate (AOM/DSS) model. Our results revealed that ZEA significantly lowered the total number of tumours, colon weight, colonic crypt depth, collagen fibrosis and spleen weight. ZEA suppressed Ras/Raf/ERK/cyclin D1 pathway, increasing the expression of apoptosis parker, cleaved caspase 3, while decreasing the expression of proliferative marker, Ki67 and cyclin D1. The gut microbiota composition in ZEA group showed higher stability and lower vulnerability in the microbial community when compared to AOM/DSS group. ZEA increased the abundance of short chain fatty acids (SCFAs) producing bacteria unidentified Ruminococcaceae, Parabacteroidies and Blautia, as well as the faecal acetate content. Notably, unidentified Ruminococcaceae and Parabacteroidies were substantially correlated with the decrease in tumour count. Overall, ZEA demonstrated a promising inhibitory effect on colorectal tumorigenesis and exhibited the potential for further development as a CRC treatment.


Assuntos
Colite , Neoplasias Colorretais , Zearalenona , Humanos , Animais , Camundongos , Neoplasias Colorretais/patologia , Zearalenona/farmacologia , Zearalenona/metabolismo , Zearalenona/uso terapêutico , Ciclina D1/metabolismo , Sistema de Sinalização das MAP Quinases , Colite/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Azoximetano/uso terapêutico , Bactérias/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Int J Nanomedicine ; 17: 5049-5061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325149

RESUMO

Background: Transgenic C57BL/6-APC(Min/+) spontaneous cancer mouse model and the Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) chemically induced orthotopic colorectal cancer mouse model represented distinct pathogenesis of colorectal cancers. Our previous study revealed that the combination of Rapamycin liposomes (Rapa/Lps) and 5-Fluorouracil (5-FU) has anti-colorectal cancer effects. However, the therapeutic efficacy of Rapa/Lps and 5-FU in other colorectal cancer mice models is yet to be thoroughly explored. The purpose of this study was to investigate the anti-tumor effect of Rapa/Lps combined with 5-FU in vivo and in vitro. Methods: In this study, we evaluated the effect of Rapa/Lps and 5-FU on APC (Min/+) mice and AOM/DSS-induced colorectal cancer mice. The small intestine, colorectum, serum, and plasma of mice in each group were collected following sacrifice to record the number of tumors. HE staining was utilized for observing pathological damage to intestine tissues. Tube formation assay, Transwell assay, wound healing assay, Western Blot were used to explore the anti-angiogenesis effect of drugs in HUVECs. Results: As expected, Rapa/Lps and 5-FU significantly suppressed tumor formation, decreased the number of tumors, and tumor load both in two mouse models, and had no influence on mouse weight. Mechanically, the anti-tumor effect of the drug also was associated in inhibiting angiogenesis and proliferation. Furthermore, we found that Rapa/Lps obviously inhibited HUVECs tube formation and migration. Conclusion: Altogether, we revealed the Rapa/Lps synergism with 5-FU decreased colon and small intestinal tumorigenesis in AOM/DSS-treated and APC (Min/+) mice, respectively, and correlated with anti-angiogenesis.


Assuntos
Colite , Neoplasias Colorretais , Camundongos , Animais , Azoximetano/toxicidade , Azoximetano/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Lipossomos/uso terapêutico , Sulfato de Dextrana/toxicidade , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Lipopolissacarídeos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite/induzido quimicamente
5.
Oxid Med Cell Longev ; 2022: 4061713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927991

RESUMO

Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias do Colo , Neoplasias Colorretais , Adenosil-Homocisteinase/metabolismo , Animais , Azoximetano/uso terapêutico , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Proteínas Hedgehog/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
6.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232275

RESUMO

Colon cancer is a devastating illness that is associated with gut inflammation. Here, we explored the possible role of lipin-1, a phosphatidic acid phosphatase, in the development of colitis-associated tumorigenesis. Azoxymethane and dextran sodium sulfate-treated (DSS-treated) animals deficient in lipin-1 harbored fewer tumors and carcinomas than WT animals due to decreased cellular proliferation, lower expression of antiapoptotic and protumorigenic factors, and a reduced infiltration of macrophages in colon tumors. They also displayed increased resistance to DSS-induced colitis by producing less proinflammatory cytokines and experiencing less immune infiltration. Lipin-1-deficient macrophages from the colon were less activated and displayed lower phosphatidic acid phosphatase activity than WT macrophages isolated from DSS-treated animals. Transference of WT macrophages into lipin-1-deficient animals was sufficient to increase colitis burden. Furthermore, treatment of lipin-1-deficient mice with IL-23 exacerbated colon inflammation. Analysis of human databases from colon cancer and ulcerative colitis patients showed that lipin-1 expression is increased in those disorders and correlates with the expression of the proinflammatory markers CXCL1 and CXCL2. And finally, clinically, LPIN1 expression had prognostic value in inflammatory and stem-cell subtypes of colon cancers. Collectively, these data demonstrate that lipin-1 is a critical regulator of intestinal inflammation and inflammation-driven colon cancer development.


Assuntos
Carcinogênese/metabolismo , Colo , Neoplasias do Colo/metabolismo , Inflamação/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Animais , Azoximetano/uso terapêutico , Proliferação de Células , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa , Proteínas Nucleares/efeitos adversos , Proteínas Nucleares/genética , Fosfatidato Fosfatase/efeitos adversos , Fosfatidato Fosfatase/genética
7.
PLoS One ; 8(7): e69660, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922772

RESUMO

Angiogenesis, the recruitment and re-configuration of pre-existing vasculature, is essential for tumor growth and metastasis. Increased tumor vascularization often correlates with poor patient outcomes in a broad spectrum of carcinomas. We identified four jointed box 1 (FJX1) as a candidate regulator of tumor angiogenesis in colorectal cancer. FJX1 mRNA and protein are upregulated in human colorectal tumor epithelium as compared with normal epithelium and colorectal adenomas, and high expression of FJX1 is associated with poor patient prognosis. FJX1 mRNA expression in colorectal cancer tissues is significantly correlated with changes in known angiogenesis genes. Augmented expression of FJX1 in colon cancer cells promotes growth of xenografts in athymic mice and is associated with increased tumor cell proliferation and vascularization. Furthermore, FJX1 null mice develop significantly fewer colonic polyps than wild-type littermates after combined dextran sodium sulfate (DSS) and azoxymethane (AOM) treatment. In vitro, conditioned media from FJX1 expressing cells promoted endothelial cell capillary tube formation in a HIF1-α dependent manner. Taken together our results support the conclusion that FJX1 is a novel regulator of tumor progression, due in part, to its effect on tumor vascularization.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Azoximetano/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Sulfato de Dextrana/uso terapêutico , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética
8.
Environ Mol Mutagen ; 44(1): 26-35, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15199544

RESUMO

During recent years, multidisciplinary studies in epidemiology and molecular biology have contributed to our understanding of the etiology of colorectal cancer; more importantly they have enabled us to approach its prevention. An impressive body of epidemiological data suggests an inverse relationship between colorectal cancer risk and consumption of diets rich in omega (omega)-3 fatty acids (n-3 PUFAs) or the regular use of nonsteroidal antiinflammatory drugs (NSAIDs), including aspirin. The development of strategies for the chemoprevention of colorectal cancer have been facilitated by the use of relevant animal models mimicking the neoplastic processes that occur in humans, including similarities in histopathology and molecular and genetic lesions during both the early and promotion/progression stages of carcinogenesis. Studies with the azoxymethane-F344 rat model indicate that diets rich in n-3 PUFAs, NSAIDs, selective cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) inhibitors, and curcumin can reduce the incidence of colon cancer. Advances in the knowledge of the mechanisms by which chemopreventive agents act offer opportunities to use combinations of specific chemopreventive agents, having clinically beneficial aggregate activity with minimal toxicity. This approach is extremely important when a promising chemopreventive agent demonstrates apparent efficacy but may produce toxic effects at high doses. Our studies show that a combination of very low doses of piroxicam (NSAID) and difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, or very low doses of COX-2 and HMG-CoA reductase inhibitors are more effective in inhibiting colon carcinogenesis than administration of these compounds as single agents even at higher levels. The natural history of colorectal cancer, from dysplastic aberrant crypts to adenomas and adenocarcinomas, offers multiple opportunities for assessment and intervention. Of further importance is to identify whether the molecular targets that are critical in the growth and survival of the malignant colorectal cell are modulated by n-3 PUFAs, NSAIDs, or COX-2 and iNOS inhibitors.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/fisiopatologia , Modelos Biológicos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Azoximetano/uso terapêutico , Quimioprevenção , Ciclo-Oxigenase 2 , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eflornitina/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Isoenzimas/antagonistas & inibidores , Proteínas de Membrana , Piroxicam/uso terapêutico , Prostaglandina-Endoperóxido Sintases , Ratos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...