Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 26(6): 124, 2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388588

RESUMO

Lignin and phenolic compounds have been shown as the main recalcitrance for biomass decomposition, as they inhibit a number of lignocellulose-degrading enzymes. Understanding the inhibition mechanisms and energetic competitions with the native substrate is essential for the development of lignin resistive enzymes. In this study, atomistic detail of the size-dependent effects and binding modes of monomeric coniferyl alcohol, dimeric oligolignol, and tetrameric oligolignol made from coniferyl alcohols on the GH11 xylanase from Bacillus firmus strain K-1 was investigated by using molecular docking and atomistic molecular dynamics (MD) simulations. From the MD simulation results on the docked conformation of oligolignol binding within the "Cleft" and the "N-terminal," changes were observed both for protein conformations and positional binding of ligands, as binding with "Thumb" regions was found for all oligolignin models. Moreover, the uniquely stable "N-terminal" binding of the coniferyl alcohol monomer had no effect on the highly fluctuated Thumb region, showing no sign of inhibitory effect, and was in good agreement with recent studies. However, the inhibitory effect of oligolignols was size dependent, as the estimated binding energy of the tetrameric oligolignol became stronger than that of the xylohexaose substrate, and the important binding residues were identified for future protein engineering attempts to enhance the lignin resistivity of GH11. Graphical Abstract Size-dependent binding modes of coniferyl alcohol monomers (upper panels) and the dimers (lower panels). Uniquely stable "N-terminal" binding of the monomer is shown to have no effect on the binding pocket, and hence no sign of inhibition, which was in good agreement with some recent studies.


Assuntos
Bacillus firmus/enzimologia , Modelos Moleculares , Fenóis/farmacologia , Xilosidases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Lignina/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenóis/química , Polímeros/química , Polímeros/farmacologia , Ligação Proteica , Conformação Proteica , Xilosidases/metabolismo
2.
Arch Biochem Biophys ; 672: 108068, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31401092

RESUMO

Synergistic effect of distal site-directed mutations and molecular mechanisms on the enhanced thermostability of GH11 xylanase from B. firmus Strain K-1 (xyn11A) was investigated through enzyme activity assays and atomistic molecular dynamics (MD) simulation. From the experiment, single N-terminal leucine substitution at K40L caused a significant drop in enzymatic activity. However, the addition of a disulphide bond at S100C/N147C, along with the K40L mutation enhanced the enzymatic activity at room temperature. Molecular mechanisms on the improvement of enzymatic activity were addressed through atomistic molecular dynamics (MD) simulations of enzyme-substrate complexes. Conformational analysis of the right-hand-shaped GH11 protein structures showed that K40L mutation 'tilted' the Palm region away from the Pinky finger at N-terminus and S100C/N147C tilted the Palm region towards the Pinky finger at N-terminus, which destabilized the binding complexes. The extended hydrophobic cluster formed within the K40L/S100C/N147C mutant stabilized the loops associated with the N-terminus and the Thumb region, which facilitated substrate binding and corresponded to the enhanced activity. This proposed mechanism could serve as a scheme for protein engineering to enhance enzymatic activity of GH11 enzymes at low temperatures.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Endo-1,4-beta-Xilanases/química , Bacillus firmus/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Cisteína/química , Endo-1,4-beta-Xilanases/genética , Ensaios Enzimáticos , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica
3.
Bioprocess Biosyst Eng ; 42(4): 621-629, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604010

RESUMO

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol ß-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol ß-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol ß-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.


Assuntos
Bacillus firmus , Bacillus subtilis , Proteínas de Bactérias , Clonagem Molecular , Glucosiltransferases , Análise de Sequência de DNA , Bacillus firmus/enzimologia , Bacillus firmus/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Expressão Gênica , Glucosiltransferases/biossíntese , Glucosiltransferases/química , Glucosiltransferases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
J Biomol Struct Dyn ; 36(15): 3978-3992, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29129140

RESUMO

Local conformational changes and global unfolding pathways of wildtype xyn11A recombinant and its mutated structures were studied through a series of atomistic molecular dynamics (MD) simulations, along with enzyme activity assays at three incubation temperatures to investigate the effects of mutations at three different sites to the thermostability. The first mutation was to replace an unstable negatively charged residue at a surface beta turn near the active site (D32G) by a hydrophobic residue. The second mutation was to create a disulphide bond (S100C/N147C) establishing a strong connection between an alpha helix and a distal beta hairpin associated with the thermally sensitive Thumb loop, and the third mutation add an extra hydrogen bond (A155S) to the same alpha helix. From the MD simulations performed, MM/PBSA energy calculations of the unfolding energy were in a good agreement with the enzyme activities measured from the experiment, as all mutated structures demonstrated the improved thermostability, especially the S100C/N147C proved to be the most stable mutant both by the simulations and the experiment. Local conformational analysis at the catalytic sites and the xylan access region also suggested that mutated xyn11A structures could accommodate xylan binding. However, the analysis of global unfolding pathways showed that structural disruptions at the beta sheet regions near the N-terminal were still imminent. These findings could provide the insight on the molecular mechanisms underlying the enhanced thermostability due to mutagenesis and changes in the protein unfolding pathways for further protein engineering of the GH11 family xylanase enzymes.


Assuntos
Bacillus firmus/química , Proteínas de Bactérias/química , Endo-1,4-beta-Xilanases/química , Simulação de Dinâmica Molecular , Mutação , Engenharia de Proteínas/métodos , Bacillus firmus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
5.
World J Microbiol Biotechnol ; 34(1): 10, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255935

RESUMO

Nitrite is generated from the nitrogen cycle and its accumulation is harmful to environment and it can be reduced to nitric oxid by nitrite reductase. A novel gene from Bacillus firmus GY-49 is identified as a nirK gene encoding Cu-containing nitrite reductase by genome sequence. The full-length protein included a putative signal peptide of 26 amino acids and shown 72.73% similarity with other Cu-containing nitrite reductase whose function was verified. The 993-bp fragment encoding the mature peptide of NirK was cloned into pET-28a (+) vector and overexpressed as an active protein of 36.41 kDa in the E.coli system. The purified enzyme was green in the oxidized state and displayed double gentle peaks at 456 and 608 nm. The specific activity of purified enzyme was 98.4 U/mg toward sodium nitrite around pH 6.5 and 35 °C. The K m and K cat of NirK on sodium nitrite were 0.27 mM and 0.36 × 103 s-1, respectively. Finally, homology model analysis of NirK indicated that the enzyme was a homotrimer structure and well conserved in Cu-binding sites for enzymatic functions. This is a first report for nitrite reductase from Bacillus firmus, which augment the acquaintance of nitrite reductase.


Assuntos
Bacillus firmus/enzimologia , Bacillus firmus/genética , Cobre/química , Genes Bacterianos/genética , Nitrito Redutases/química , Nitrito Redutases/genética , Nitrito Redutases/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ativação Enzimática , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais , Modelos Moleculares , Nitritos/metabolismo , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de Proteína , Temperatura
6.
Sci Rep ; 6: 25012, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118554

RESUMO

Plant-parasitic nematodes (PPNs) cause serious harm to agricultural production. Bacillus firmus shows excellent control of PPNs and has been produced as a commercial nematicide. However, its nematicidal factors and mechanisms are still unknown. In this study, we showed that B. firmus strain DS-1 has high toxicity against Meloidogyne incognita and soybean cyst nematode. We sequenced the whole genome of DS-1 and identified multiple potential virulence factors. We then focused on a peptidase S8 superfamily protein called Sep1 and demonstrated that it had toxicity against the nematodes Caenorhabditis elegans and M. incognita. The Sep1 protein exhibited serine protease activity and degraded the intestinal tissues of nematodes. Thus, the Sep1 protease of B. firmus is a novel biocontrol factor with activity against a root-knot nematode. We then used C. elegans as a model to elucidate the nematicidal mechanism of Sep1, and the results showed that Sep1 could degrade multiple intestinal and cuticle-associated proteins and destroyed host physical barriers. The knowledge gained in our study will lead to a better understanding of the mechanisms of B. firmus against PPNs and will aid in the development of novel bio-agents with increased efficacy for controlling PPNs.


Assuntos
Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Bacillus firmus/enzimologia , Nematoides/efeitos dos fármacos , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Animais , Anti-Helmínticos/metabolismo , Bacillus firmus/genética , Genoma Bacteriano , Proteínas de Helminto/metabolismo , Proteólise , Análise de Sequência de DNA , Serina Proteases/genética , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...