RESUMO
Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.
Assuntos
Bacillus thuringiensis , Bacillus , Desinfetantes , Glutaral , Esporos Bacterianos , Desinfetantes/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Glutaral/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Testes de Sensibilidade Microbiana , o-Ftalaldeído/farmacologia , Bacillus cereus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Desinfecção/métodosRESUMO
Spodoptera frugiperda is a pest of economic importance for several crops with resistance reports to Bt crops and pesticides. Eco-friendly Bt biopesticides may be an alternative to chemical insecticides due to their selectivity and specificity. However, the efficacy of Bt biopesticides may be influenced by the association with other chemicals, such as adjuvants. This study evaluated the compatibility and toxicity of Bt biopesticides mixed with adjuvants for the control of S. frugiperda. The treatments included the association of Dipel SC and Dipel PM with adjuvants. Compatibility tests were used to evaluate the Bt mixture. Bt suspensions obtained from mixtures of Bt and adjuvants at 106 and 3 × 108 spores/mL-1 were used to evaluate S. frugiperda mortality and distilled water was used as the control. The addition of the adjuvant LI increased growth and sporulation, indicating compatibility with Bt biopesticides. The other adjuvants were toxic to reducing Bt growth and sporulation. Only the mixture of Bt with LI and Bt alone was effective to S. frugiperda. The addition of adjuvants to Bt biopesticide affect the Bt sporulation, growth and mortality.
Assuntos
Adjuvantes Farmacêuticos/farmacologia , Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/farmacologia , Endotoxinas/farmacologia , Inseticidas/farmacologia , Spodoptera/microbiologia , Animais , Bacillus thuringiensis/crescimento & desenvolvimento , Proteção de Cultivos/métodos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Composição de Medicamentos/métodos , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Resistência a Inseticidas/efeitos dos fármacosRESUMO
Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) preys on insect pests in eucalyptus plantations where it can be exposed to insecticides used in pest control. The effect of insecticides on non-target natural enemies requires further study. The objective of the present study was to evaluate the side-effects of Bacillus thuringiensis (Bt), permethrin, tebufenozide and thiamethoxam on third instar nymphs of the predator P. nigrispinus in the laboratory. The toxicity of insecticides for this insect was determined by estimating their lethal concentrations. Podisus nigrispinus behavior after exposure to insecticides was analyzed using a video tracking system and the respiratory rate with a respirometer. Prey/nymph consumption was assessed after 24 h of starvation. The preference of P. nigrispinus nymphs, for prey treated or not with the insecticides, was evaluated in free choice tests. The insecticides Bt [LC50 = 1.10(0.83-1.46) mg mL-1], permethrin [LC50 = 0.25(0.17-0.34) mg mL-1], tebufenozide [LC50 = 5.71(4.17-7.57) mg mL-1] and thiamethoxam [LC50 = 0.04(0.02-0.06) mg mL-1] are toxic to P. nigrispinus nymphs. Bt and the insecticides tebufenozide, permethrin and thiamethoxam reduced the respiratory rate of P. nigrispinus. The insecticides permethrin, tebufenozide and thiamethoxam affect the locomotion of this insect's nymphs. Prey treated with Bt, permethrin and thiamethoxam are less preferred by P. nigrispinus. The survival of the nymphs of this predator was 93.3%, 66.7%, 56.6%, 0% and 0% in the control, tebufenozide, Bt, permethrin and thiamethoxam treatments, respectively. In addition, the reduction of prey consumption, treated with neurotoxic insecticides, reduces the predatory potential of this natural enemy. Bt and tefubenozide present low toxicity for P. nigrispinus, but the neurotoxic products have low compatibility with this natural enemy and, therefore, are not recommended, with this predator in the management of forest insect pests.
Assuntos
Comportamento Alimentar/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/toxicidade , Ninfa/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Animais , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/crescimento & desenvolvimento , Brasil , Eucalyptus/crescimento & desenvolvimento , Controle de Pragas , Controle Biológico de VetoresRESUMO
The most commonly used biopesticides to control agricultural, forest and insect vectors of human diseases are derived from the bacterium Bacillus thuringiensis, which begins to produce Cry and Cyt insecticidal proteins during the onset of the sporulation phase. Some B. thuringiensis strains also produce S-layer proteins that are toxic to certain pests. S-layer proteins are the most abundant proteins in bacteria and archaea. This proteins' key trait to design high performace processes for mass production is their continuous expression during the vegetative phase, unlike Cry and Cyt, which are restricted to the sporulation phase. In this work, a S-layer protein expressed by the GP543 strain of B. thuringiensis that is toxic to the cattle tick Rhipicephalus microplus was mass produced using the batch culture fermentation technique. In addition, the spore-protein complex showed a mortality rate of 75% with a dose of 300 µg·mL-1 on adult females of R. microplus after fourteen days. The lethal concentration 50 was 69.7 µg·mL-1. The treatment also caused a decrease of 13% in the weight of the mass of oviposited eggs with 200 µg·mL-1 of the spore-protein complex and inhibition of the hatching of eggs from 80 to 92%. Therefore, this could be a good option for controlling this parasite. The advantages of S-layer protein synthesis are focused on the production of a new generation of proteins in pest control. This is the first report on the mass production of an S-layer protein that is responsible for toxicity.
Assuntos
Bacillus thuringiensis/química , Técnicas Bacteriológicas/métodos , Agentes de Controle Biológico/isolamento & purificação , Microbiologia Industrial/métodos , Glicoproteínas de Membrana/isolamento & purificação , Rhipicephalus/efeitos dos fármacos , Animais , Anticorpos Antibacterianos/biossíntese , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/crescimento & desenvolvimento , Bacillus thuringiensis/metabolismo , Agentes de Controle Biológico/toxicidade , Biomassa , Reatores Biológicos , Bovinos , Meios de Cultura/farmacologia , Feminino , Fermentação , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/toxicidade , Oviposição/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Coelhos , Esporos BacterianosRESUMO
One of the strategies of integrated vector management is to lure gravid mosquitoes for surveillance purposes or to entice them to lay eggs in water containing toxins that kill the offspring (attract-and-kill or trap-and-kill). Typically, the major challenge of this approach is the development of a lure that stimulates oviposition plus a toxin with no deterrent effect. Bacillus thuringiensis var. israelensis (Bti) satisfies the latter criterion, but lures for these autocidal gravid traps are sorely needed. We observed that gravid Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus laid significantly more eggs in cups with extracts from 4th-stage larvae (4 L) of the same or different species. No activity was found when 4 L were extracted with hexane, diethyl ether, methanol, or butanol, but activity was observed with dimethyl sulfoxide extracts. Larval extracts contained both oviposition stimulant(s)/attractant(s) and deterrent(s), which partitioned in the water and hexane phases, respectively. Lyophilized larval extracts were active after a month, but activity was reduced by keeping the sample at 4 °C. In the tested range of 0.1 to 1 larvae-equivalent per milliliter, oviposition activity increased in a dose-dependent manner. In field experiments, Ae. aegpti laid significantly more eggs in traps loaded with larval extracts plus Bti than in control traps with water plus Bti.
Assuntos
Aedes/efeitos dos fármacos , Fatores Biológicos/farmacologia , Larva/química , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Bacillus thuringiensis/efeitos dos fármacos , Culex/efeitos dos fármacos , Feminino , Oviposição/efeitos dos fármacosRESUMO
The structural gene that encodes thurincin H, a bacteriocin produced by Bacillus thuringiensis, is harboured in a genetic cluster (thnP, E, D, R, A1, A2, A3, B, T, I) that controls its synthesis, modification, secretion and autoimmunity. The specific genes in the cassette that confer immunity in B. thuringiensis to thurincin H are unknown. To identify these immunity determinants, we generated constructs that were used to transform a natural thurincin H-sensitive B. thuringiensis strain (i.e. Btk 404), and resistance or susceptibility to the bacteriocin in resultant recombinants was evaluated. When Btk 404/pHT3101-ThnARDEP and Btk 404/pHT3101-ThnABTI were exposed to thurincin H, immunity was demonstrated by the former only, indicating that ThnI does not play a role in resistance to the bacteriocin as previously proposed. Furthermore, we generated different sub-cassettes under the control of divergent promoters pThnR and pThur of the thurincin H locus, and pChi, and using the green fluorescent protein gene as reporter, which demonstrated that all promoters were recognised by ThnR, except pChi. We show for the first time that the small operon composed of thnR, thnD and thnE is required for immunity of B. thuringiensis to thurincin H, and thnI is not necessary for this response.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Bacillus thuringiensis/imunologia , Bacteriocinas/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Autoimunidade , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Família Multigênica , Óperon , Regiões Promotoras GenéticasRESUMO
Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time.
Assuntos
Annona/metabolismo , Antibacterianos/farmacologia , Bacillus thuringiensis/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo , Streptococcus pyogenes/crescimento & desenvolvimento , Bacillus thuringiensis/efeitos dos fármacos , Brasil , Técnicas de Cultura de Células , Testes de Sensibilidade Microbiana , Streptococcus pyogenes/efeitos dos fármacosRESUMO
Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances.
Assuntos
Annona/metabolismo , Antibacterianos/farmacologia , Bacillus thuringiensis/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo , Streptococcus pyogenes/crescimento & desenvolvimento , Brasil , Bacillus thuringiensis/efeitos dos fármacos , Técnicas de Cultura de Células , Testes de Sensibilidade Microbiana , Streptococcus pyogenes/efeitos dos fármacosRESUMO
AIMS: To use bovicin HC5 to inhibit predominant bacteria isolated from spoiled mango pulp. METHODS AND RESULTS: Bovicin HC5 and nisin were added to brain heart infusion (BHI) medium (40-160 AU ml(-1)) or mango pulp (100 AU ml(-1)) and the growth of Bacillus cereus and Bacillus thuringiensis was monitored. Cultures treated with bovicin HC5 or nisin showed longer lag phases and grew slower in BHI medium. Bovicin HC5 and nisin were bactericidal and showed higher activity in mango pulp at acidic pH values. To determine the effect on spore germination and D values, mango pulp containing bovicin HC5 was inoculated with 10(6) and 10(9) spores per ml(-1), respectively, from each strain tested. Bovicin HC5 reduced the outgrowth of spores from B. cereus and B. thuringiensis, but thermal sensitivity was not affected. CONCLUSIONS: Bovicin HC5 was bactericidal against B. cereus and B. thuringiensis isolated from spoiled mango pulp. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacillus cereus and B. thuringiensis had not been previously isolated from spoiled mango pulp and bovicin HC5 has the potential to inhibit such bacteria in fruit pulps.
Assuntos
Bacillus cereus/efeitos dos fármacos , Bacillus thuringiensis/efeitos dos fármacos , Bacteriocinas/farmacologia , Microbiologia de Alimentos , Mangifera/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus cereus/crescimento & desenvolvimento , Bacillus thuringiensis/crescimento & desenvolvimento , Conservação de AlimentosRESUMO
Little is known about native populations of Bacillus thuringiensis (Bt) isolated from soils of Argentina. We undertook this study to determine the resistance to different pesticides of two commercial and fourteen native strains of Bt under in vitro conditions. An agar plate bioassay test conducted with ten pesticides and sixteen strains of Bt showed that Basagran, Scepter, Fungoxan and Decis were not toxic for the bioinsecticide bacteria at recommended application rates (RAR). In contrast, low concentrations (3.2% RAR) of Agil, Select and Isomero showed a deleterious effect on the bacteria investigated. Simultaneously, four of the pesticides were able to produce phenotypical changes on the Bt colonies grown on nutrient agar. Moreover, in a greenhouse experiment, seven pesticides applied at 1.6%, 12.5% and 100% RAR on soybean leaves were not as inhibitory as under in vitro conditions for two Bt strains (HD-1 and A61). However, survival of these strains in the phyllosphere of soybean differed significantly between untreated leaves and leaves treated with pesticides after 20 days of study (P < 0.05). Finally, and from an ecological point of view, these findings suggest that the addition of some pesticides to soybean leaves in lower concentrations than those recommended could be favourable for the persistence of Bt in this environment.
Assuntos
Bacillus thuringiensis/efeitos dos fármacos , Praguicidas/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Bacillus thuringiensis/crescimento & desenvolvimento , Bradyrhizobium/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Fungicidas Industriais/farmacologia , Herbicidas/farmacologia , Inseticidas/farmacologia , Controle Biológico de Vetores , Fenótipo , Folhas de Planta/microbiologia , Glycine max/microbiologiaRESUMO
Little is known about native populations of Bacillus thuringiensis (Bt) isolated from soils of Argentina. We undertook this study to determine the resistance to different pesticides of two commercial and fourteen native strains of Bt under in vitro conditions. An agar plate bioassay test conducted with ten pesticides and sixteen strains of Bt showed that Basagran, Scepter, Fungoxan and Decis were not toxic for the bioinsecticide bacteria at recommended application rates (RAR). In contrast, low concentrations (3.2 RAR) of Agil, Select and Isomero showed a deleterious effect on the bacteria investigated. Simultaneously, four of the pesticides were able to produce phenotypical changes on the Bt colonies grown on nutrient agar. Moreover, in a greenhouse experiment, seven pesticides applied at 1.6, 12.5 and 100 RAR on soybean leaves were not as inhibitory as under in vitro conditions for two Bt strains (HD-1 and A61). However, survival of these strains in the phyllosphere of soybean differed significantly between untreated leaves and leaves treated with pesticides after 20 days of study (P < 0.05). Finally, and from an ecological point of view, these findings suggest that the addition of some pesticides to soybean leaves in lower concentrations than those recommended could be favourable for the persistence of Bt in this environment.(AU)
Assuntos
Estudo Comparativo , RESEARCH SUPPORT, NON-U.S. GOVT , Bacillus thuringiensis/efeitos dos fármacos , Praguicidas/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Bacillus thuringiensis/crescimento & desenvolvimento , Bradyrhizobium/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Fungicidas Industriais/farmacologia , Herbicidas/farmacologia , Inseticidas/farmacologia , Controle Biológico de Vetores , Fenótipo , Folhas de Planta/microbiologia , Glycine max/microbiologiaRESUMO
Entomopathogenic bacilli B. thuringiensis israelensis (Bti) and B. sphaericus (Bf) exhibit low survival on field application. It was previously shown that their spores are very sensitive to different stress effectors (heat, UV light) and especially to osmotic variations. Since SASP (Small, Acid-Soluble Spore Proteins), alpha/beta and gamma type, are involved in spore tolerance to heat, UV light, peroxide, and salt, they were analyzed in Bti and Bf. The molecular weight, migration pattern and amino acid composition of different SASP were determined and compared with other bacilli, in particular to B. subtilis. A relation between spore osmotolerance, SASP content, and amino acid composition was shown. In addition, the absence of gamma SASP in Bti and Bf is discussed.
Assuntos
Bacillus thuringiensis/metabolismo , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus/efeitos dos fármacos , Bacillus/efeitos da radiação , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/efeitos da radiação , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/efeitos da radiação , Pressão Osmótica/efeitos dos fármacos , Peróxidos/farmacologia , Cloreto de Sódio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Temperatura , Raios UltravioletaRESUMO
Bacitracin induced one protein (bacitracin-induced protein [BIP]) in Bacillus thuringiensis and two proteins (BIP1 and BIP2) in Bacillus subtilis that were localized in the membrane. Divalent cations acted as cofactors for induction in all three cases. Growth was initially inhibited by the antibiotic, but following induction of proteins growth resumed. B. subtilis cells possessing BIPs were able to duplicate at a normal rate in the presence of bacitracin. The amount of B. subtilis BIPs diminished markedly after a few divisions in the absence of the antibiotic and the organism simultaneously reverted to the susceptible state. Induction of the proteins did not take place after the fourth or fifth hour of the stationary phase. The B. thuringiensis BIP was also induced by vancomycin. Bacitracin did not induce the synthesis of specific proteins in susceptible (Micrococcus lysodeikticus) or outer membrane-possessing resistant bacteria (Escherichia coli).