Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Enzyme Microb Technol ; 127: 32-42, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31088614

RESUMO

Currently, hyperstable endo-1,4-ß-xylanase has been the focus of attention as potent biocatalyst as well as utilization in bioconversion process. Therefore, the gene (1035 bp) of a monomeric glycoside hydrolase family 10 (GH10) endo-1,4-ß-xylanase (TnXynB) from a hyperthermophilic eubacterium Thermotoga naphthophila RKU-10T was cloned and overexpressed in a mesophilic host system. The extracellular TnXynB was purified to homogeneity with a molecular mass of 40 kDa, and showed peak activity at pH 6.0 and 95 °C temperature. Purified TnXynB has prodigious stability over a broad range of pH (5.5-8.0) and temperature (50-85 °C) even after 8 h incubation, and also revealed great tolerance toward different modulators (metal cations, surfactants and organic solvents). TnXynB exhibited great affinity towards various heteroglycans and para-nitrophenyl glycosides substrates. The values of K m, Vmax, kcat, and kcat K m-1 were 2.75 mg mL-1, 3146.7 µmol mg-1 min-1, 40,342.3 s-1, 14,669.93 mL mg-1 s-1, respectively using birchwood xylan as substrate. Thermodynamic parameters for birchwood xylan hydrolysis at 95 °C as ΔS*, ΔH*, and ΔG* were -22.88 J mol-1 K-1, 62.44 kJ mol-1, and 70.86 kJ mol-1 respectively. TnXynB displayed a half-life (t1/2) of 54.15 min at 96 °C with ΔS*D, ΔH*D, and ΔG*D values of 1.074 kJ mol-1 K-1, 513.23 kJ mol-1 and 116.92 kJ mol-1, respectively. All noteworthy features of TnXynB make this new recombinant enzyme an appropriate candidate for the biodegradation of lignocellulosic substrates as well as various other industrial bioprocesses.


Assuntos
Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Clonagem Molecular , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Expressão Gênica , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 115(26): 6709-6714, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891673

RESUMO

The peptidoglycan cell wall provides an essential protective barrier in almost all bacteria, defining cellular morphology and conferring resistance to osmotic stress and other environmental hazards. The precursor to peptidoglycan, lipid II, is assembled on the inner leaflet of the plasma membrane. However, peptidoglycan polymerization occurs on the outer face of the plasma membrane, and lipid II must be flipped across the membrane by the MurJ protein before its use in peptidoglycan synthesis. Due to its central role in cell wall assembly, MurJ is of fundamental importance in microbial cell biology and is a prime target for novel antibiotic development. However, relatively little is known regarding the mechanisms of MurJ function, and structural data for MurJ are available only from the extremophile Thermosipho africanus Here, we report the crystal structure of substrate-free MurJ from the gram-negative model organism Escherichia coli, revealing an inward-open conformation. Taking advantage of the genetic tractability of E. coli, we performed high-throughput mutagenesis and next-generation sequencing to assess mutational tolerance at every amino acid in the protein, providing a detailed functional and structural map for the enzyme and identifying sites for inhibitor development. Lastly, through the use of sequence coevolution analysis, we identify functionally important interactions in the outward-open state of the protein, supporting a rocker-switch model for lipid II transport.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transferência de Fosfolipídeos/química , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Evolução Molecular , Biblioteca Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Relação Estrutura-Atividade
3.
J Microbiol Biotechnol ; 28(4): 606-612, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29429321

RESUMO

The enzyme xylose isomerase (E.C. 5.3.1.5, XI) is responsible for the conversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studied the characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, the gene coding for XI (xylA) was inserted into the pET-21a(+) expression vector and the construct was transformed into the Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-ß-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was 80°C and measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at 60°C. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase the enzyme activity; manganese was the most effective. Additionally, recombinant XI was resistant to the presence of Ca²âº and Zn²âº ions. The kinetic properties, Km and Vmax, were calculated as 81.44 mM and 2.237 µmol/min/mg, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus, and Thermotoga. These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Anoxybacillus/enzimologia , Anoxybacillus/genética , Cálcio/efeitos adversos , Regulação Bacteriana da Expressão Gênica , Zinco/efeitos adversos , Aldose-Cetose Isomerases/isolamento & purificação , Bacillus/enzimologia , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Ativação Enzimática , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/genética , Geobacillus/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Metais/efeitos adversos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
4.
Food Chem ; 240: 422-429, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946292

RESUMO

This work reports a novel thermophilic ß-glucosidase (TN0602) from Thermotoga naphthophila RKU-10, demonstrating exceptionally high catalytic selectivity (100%) for the exclusive synthesis of prebiotic galactotrisaccharides (GOS3) in a high volumetric production yield of 23.28gL-1h-1 (higher than the highest value ever reported) at pH 6.5 and 75°C, with milk processing waste lactose as both the galactosyl donor and acceptor. A comparative study with commercial ß-galactosidase from Aspergillus oryzae (AO) with respect to reaction kinetics, enzyme-substrate thermodynamic binding (substrate induced fluorescence quenching) and molecular docking simulation studies showed that ß-glucosidase TN0602 has a deep catalytic "pocket" with a narrow entrance that prevents simultaneous access of lactose and GOS3 to the catalytic site, explaining its distinct catalytic specificity and reaction kinetics. The findings revealed in this work offer an improved understanding of how enzyme protein structure determines catalytic specificity, which serves as new knowledge to engineer ß-glucosidase for the biosynthesis of designer GOS.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , beta-Glucosidase/metabolismo , Animais , Cinética , Simulação de Acoplamento Molecular , Oligossacarídeos , Termodinâmica , beta-Galactosidase
5.
PLoS One ; 12(7): e0181629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727856

RESUMO

Lignin is a major obstacle for cost-effective conversion of cellulose into fermentable sugars. Non-productive adsorption onto insoluble lignin fragments and interactions with soluble phenols are important inhibition mechanisms of cellulases, including ß-glucosidases. Here, we examined the inhibitory effect of tannic acid (TAN), a model polyphenolic compound, on ß-glucosidases from the bacterium Thermotoga petrophila (TpBGL1 and TpBGL3) and archaeon Pyrococcus furiosus (PfBGL1). The results revealed that the inhibition effects on ß-glucosidases were TAN concentration-dependent. TpBGL1 and TpBGL3 were more tolerant to the presence of TAN when compared with PfBGL1, while TpBGL1 was less inhibited when compared with TpBGL3. In an attempt to better understand the inhibitory effect, the interaction between TAN and ß-glucosidases were analyzed by isothermal titration calorimetry (ITC). Furthermore, the exposed hydrophobic surface areas in ß-glucosidases were analyzed using a fluorescent probe and compared with the results of inhibition and ITC. The binding constants determined by ITC for the interactions between TAN and ß-glucosidases presented the same order of magnitude. However, the number of binding sites and exposed hydrophobic surface areas varied for the ß-glucosidases studied. The binding between TAN and ß-glucosidases were driven by enthalpic effects and with an unfavorable negative change in entropy upon binding. Furthermore, the data suggest that there is a high correlation between exposed hydrophobic surface areas and the number of binding sites on the inhibition of microbial ß-glucosidases by TAN. These studies can be useful for biotechnological applications.


Assuntos
Inibidores Enzimáticos/farmacologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Pyrococcus furiosus/enzimologia , Taninos/farmacologia , beta-Glucosidase/metabolismo , Proteínas Arqueais/antagonistas & inibidores , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Calorimetria , Relação Dose-Resposta a Droga , Escherichia coli , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Pyrococcus furiosus/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoativos/farmacologia , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/química , beta-Glucosidase/genética
6.
Enzyme Microb Technol ; 96: 111-120, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871370

RESUMO

Detection of mRNA is a valuable method for monitoring the specific gene expression. In this study, we devised a novel cDNA synthesis method using three enzymes, the genetically engineered thermostable variant of reverse transcriptase (RT), MM4 (E286R/E302K/L435R/D524A) from Moloney murine leukemia virus (MMLV), the genetically engineered variant of family A DNA polymerase with RT activity, K4polL329A from thermophilic Thermotoga petrophila K4, and the DNA/RNA helicase Tk-EshA from a hyperthermophilic archaeon Thermococcus kodakarensis. By optimizing assay conditions for three enzymes using Taguchi's method, 100 to 1000-fold higher sensitivity was achieved for cDNA synthesis than conventional assay condition using only RT. Our results suggest that DNA polymerase with RT activity and DNA/RNA helicase are useful to increase the sensitivity of cDNA synthesis.


Assuntos
DNA Complementar/biossíntese , DNA Complementar/genética , RNA/análise , RNA/genética , Sequência de Bases , DNA Helicases/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Estabilidade Enzimática , Expressão Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Vírus da Leucemia Murina de Moloney/enzimologia , Vírus da Leucemia Murina de Moloney/genética , Análise de Sequência com Séries de Oligonucleotídeos , Engenharia de Proteínas , RNA Helicases/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Thermococcus/enzimologia , Thermococcus/genética
7.
Mol Biotechnol ; 58(7): 509-19, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27209035

RESUMO

D-galacturonic acid is a potential platform chemical comprising the principal component of pectin in the citrus processing waste stream. Several enzyme activities are required for the enzymatic production of galacturonic acid from pectin, including exo- and endo-polygalacturonases. The gene TtGH28 encoding a putative GH28 polygalacturonase from Pseudothermotoga thermarum DSM 5069 (Theth_0397, NCBI# AEH50492.1) was synthesized, expressed in Escherichia coli, and characterized. Alignment of the amino acid sequence of gene product TtGH28 with other GH28 proteins whose structures and details of their catalytic mechanism have been elucidated shows that three catalytic Asp residues and several other key active site residues are strictly conserved. Purified TtGH28 was dimeric and hyperthermostable, with K t (0.5)  = 86.3 °C. Kinetic parameters for activity on digalacturonic acid, trigalacturonic acid, and polygalacturonic acid were obtained. No substrate inhibition was observed for polygalacturonate, while the K si values for the oligogalacturonides were in the low mM range, and K i for product galacturonic acid was in the low µM range. Kinetic modeling of the progress of reaction showed that the enzyme is both fully exo- and fully non-processional.


Assuntos
Expressão Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Poligalacturonase/genética , Poligalacturonase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Genes Sintéticos , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Modelos Moleculares , Poligalacturonase/química , Multimerização Proteica
8.
Mol Biotechnol ; 58(4): 268-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921187

RESUMO

Plant cell walls are composed of complex polysaccharides such as cellulose and hemicellulose. In order to efficiently hydrolyze cellulose, the synergistic action of several cellulases is required. Some anaerobic cellulolytic bacteria form multienzyme complexes, namely cellulosomes, while other microorganisms produce a portfolio of diverse enzymes that work in synergistic fashion. Molecular biological methods can mimic such effects through the generation of artificial bi- or multifunctional fusion enzymes. Endoglucanase and ß-glucosidase from extremely thermophilic anaerobic bacteria Fervidobacterium gondwanense and Fervidobacterium islandicum, respectively, were fused end-to-end in an approach to optimize polysaccharide degradation. Both enzymes are optimally active at 90 °C and pH 6.0-7.0 representing excellent candidates for fusion experiments. The direct linkage of both enzymes led to an increased activity toward the substrate specific for ß-glucosidase, but to a decreased activity of endoglucanase. However, these enzyme chimeras were superior over 1:1 mixtures of individual enzymes, because combined activities resulted in a higher final product yield. Therefore, such fusion enzymes exhibit promising features for application in industrial bioethanol production processes.


Assuntos
Celulase/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , beta-Glucosidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Catálise , Celulase/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura , beta-Glucosidase/genética
9.
J Ind Microbiol Biotechnol ; 42(6): 839-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838236

RESUMO

The thermostable ß-glucosidase gene from Thermotoga petrophila DSM 13995 was cloned and overexpressed in Escherichia coli. The activity of the recombinant ß-glucosidase was 21 U/mL in the LB medium. Recombinant ß-glucosidase was purified, and its molecular weight was approximately 81 kDa. The optimal activity was at pH 5.0 and 90 °C, and the thermostability of the enzyme was improved by Ca(2+). The ß-glucosidase had high selectivity for cleaving the outer and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1, which produced the pharmacologically active minor ginsenoside 20(S)-Rg3. In a reaction at 90 °C and pH 5.0, 10 g/L of ginsenoside Rb1 was transformed into 6.93 g/L of Rg3 within 90 min, with a corresponding molar conversion of 97.9%, and Rg3 productivity of 4620 mg/L/h. This study is the first report of a GH3-family enzyme that used Ca(2+) to improve its thermostability, and it is the first report on the high substrate concentration bioconversion of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by using thermostable ß-glucosidase under high temperature.


Assuntos
Cálcio/metabolismo , Ginsenosídeos/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Biotransformação , Cálcio/farmacologia , Ativação Enzimática , Estabilidade Enzimática/efeitos dos fármacos , Escherichia coli/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Temperatura , beta-Glucosidase/química , beta-Glucosidase/isolamento & purificação
10.
Amino Acids ; 47(5): 937-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25637167

RESUMO

The ß-glucosidases are enzymes essential for several industrial applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts. In a recent study, we have provided a biochemical characterization of two hyperthermostable ß-glucosidases from Thermotoga petrophila belonging to the families GH1 (TpBGL1) and GH3 (TpBGL3). Here, as part of a continuing investigation, the oligomeric state, the net charge, and the structural stability, at acidic pH, of the TpBGL1 and TpBGL3 were characterized and compared. Enzymatic activity is directly related to the balance between protonation and conformational changes. Interestingly, our results indicated that there were no significant changes in the secondary, tertiary and quaternary structures of the ß-glucosidases at temperatures below 80 °C. Furthermore, the results indicated that both the enzymes are stable homodimers in solution. Therefore, the observed changes in the enzymatic activities are due to variations in pH that modify protonation of the enzymes residues and the net charge, directly affecting the interactions with ligands. Finally, the results showed that the two ß-glucosidases displayed different pH dependence of thermostability at temperatures above 80 °C. TpBGL1 showed higher stability at pH 6 than at pH 4, while TpBGL3 showed similar stability at both pH values. This study provides a useful comparison of the structural stability, at acidic pH, of two different hyperthermostable ß-glucosidases and how it correlates with the activity of the enzymes. The information described here can be useful for biotechnological applications in the biofuel and food industries.


Assuntos
Proteínas de Bactérias/química , Celulases/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/química , Prótons , Estabilidade Enzimática , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Eletricidade Estática , Temperatura
11.
J Ind Microbiol Biotechnol ; 42(4): 515-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578305

RESUMO

A novel phospholipase B (TLPLB) from Thermotoga lettingae TMO has been cloned, functionally overexpressed in Escherichia coli and purified to homogeneity. Gas chromatography indicated that the enzyme could efficiently hydrolyze both the sn-1 and sn-2 ester bonds of 1-palmitoyl-2-oleoyl phosphatidylcholine as phospholipase B. TLPLB was optimally active at 70 °C and pH 5.5, respectively. Its thermostability is relatively high with a half-life of 240 min at 90 °C. TLPLB also displayed remarkable organic solvent tolerance and maintained approximately 91-161 % of its initial activity in 20 and 50 % (v/v) hydrophobic organic solvents after incubation for 168 h. Furthermore, TLPLB exhibited high degumming activity towards rapeseed, soybean, peanut and sunflower seed oils, where the phosphorus contents were decreased from 225.2, 189.3, 85.6 and 70.4 mg/kg to 4.9, 4.7, 3.2 and 2.2 mg/kg within 5 h, respectively. TLPLB could therefore be used for the degumming of vegetable oils.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Lisofosfolipase/metabolismo , Óleos de Plantas/metabolismo , Temperatura , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lisofosfolipase/genética , Lisofosfolipase/isolamento & purificação , Fosfatidilcolinas/metabolismo , Fósforo/análise , Óleos de Plantas/química , Solventes/química
12.
BMC Biotechnol ; 14: 35, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886412

RESUMO

BACKGROUND: Arabinan is an important plant polysaccharide degraded mainly by two hydrolytic enzymes, endo-arabinanase and α-L-arabinofuranosidase. In this study, the characterization and application in arabinan degradation of an endo-arabinanase from Thermotoga thermarum were investigated. RESULTS: The recombinant endo-arabinanase was expressed in Escherichia coli BL21 (DE3) and purified by heat treatment followed by purification on a nickel affinity column chromatography. The purified endo-arabinanase exhibited optimal activity at pH 6.5 and 75°C and its residual activity retained more than 80% of its initial activity after being incubated at 80°C for 2 h. The results showed that the endo-arabinanase was very effective for arabinan degradation at higher temperature. When linear arabinan was used as the substrate, the apparent K(m) and V(max) values were determined to be 12.3 ± 0.15 mg ml⁻¹ and 1,052.1 ± 12.7 µmol ml⁻¹ min⁻¹, respectively (at pH 6.5, 75°C), and the calculated kcat value was 349.3 ± 4.2 s⁻¹. CONCLUSIONS: This work provides a useful endo-arabinanase with high thermostability andcatalytic efficiency, and these characteristics exhibit a great potential for enzymatic conversion of arabinan.


Assuntos
Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Sequência de Aminoácidos , Cromatografia de Afinidade , Escherichia coli/metabolismo , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Temperatura
13.
J Biol Chem ; 289(11): 7362-73, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24469445

RESUMO

Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg(203)-Ala(230) loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.


Assuntos
Arabinose/química , Proteínas de Bactérias/metabolismo , Catálise , Glicosídeo Hidrolases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biotecnologia , Cálcio/química , Bovinos , Clonagem Molecular , Cristalografia por Raios X , Análise Mutacional de DNA , Hidrólise , Íons/química , Cinética , Ligantes , Metagenoma , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Estrutura Terciária de Proteína , Rúmen/microbiologia , Homologia de Sequência de Aminoácidos , Solventes/química
14.
BMC Biotechnol ; 13: 83, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24099409

RESUMO

BACKGROUND: Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. ß-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant ß-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above. RESULTS: A ß-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel ß-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 ß-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters K(m) and V(max) values for p-nitrophenyl-ß-D-mannopyranoside and 1,4-ß-D-mannan were 4.36±0.5 mM and 227.27±1.59 µmol min⁻¹ mg⁻¹, 58.34±1.75 mg mL⁻¹ and 285.71±10.86 µmol min⁻¹ mg⁻¹, respectively. The k(cat)/K(m) values for p-nitrophenyl-ß-D-mannopyranoside and 1,4-ß-D-mannan were 441.35±0.04 mM⁻¹ s⁻¹ and 41.47±1.58 s⁻¹ mg⁻¹ mL, respectively. It displayed high tolerance to mannose, with a K(i) value of approximately 900 mM. CONCLUSIONS: This work provides a novel and useful ß-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , beta-Manosidase/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Biologia Computacional , DNA Bacteriano/genética , Escherichia coli/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Meia-Vida , Concentração de Íons de Hidrogênio , Mananas/química , Manose/metabolismo , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Polissacarídeos/química , Especificidade por Substrato , Temperatura , beta-Manosidase/genética
15.
Biotechnol Lett ; 35(5): 719-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23386225

RESUMO

The gene coding for ribose-5-phosphate isomerase (Rpi) from Thermotoga lettingae TMO was cloned and expressed in E. coli. The recombinant enzyme was purified by Ni-affinity chromatography. It converted D-psicose to D-allose maximally at 75 °C and pH 8.0 with a 32 % conversion yield. The k m, turnover number (k cat), and catalytic efficiency (k cat k m (-1) ) for substrate D-psicose were 64 mM, 6.98 min(-1) and 0.11 mM(-1) min(-1) respectively.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia de Afinidade , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Frutose/análise , Glucose/análise , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
16.
J Biol Chem ; 287(35): 29568-78, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778256

RESUMO

The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulase/química , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Celulase/genética , Biologia Computacional , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Hidrólise , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
17.
Mol Biol Rep ; 39(7): 7251-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22322560

RESUMO

The 1,044 bp endo-1,4-ß-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and ß-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 µmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(½)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-ß-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.


Assuntos
Clonagem Molecular , Endo-1,4-beta-Xilanases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Xilanos/metabolismo , Sequência de Aminoácidos , DNA Bacteriano/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Amplificação de Genes , Expressão Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Hidrólise , Imidas/metabolismo , Morfolinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Termodinâmica , beta-Glucanas/metabolismo
18.
Appl Environ Microbiol ; 78(6): 1978-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247137

RESUMO

Four hyperthermophilic members of the bacterial genus Thermotoga (T. maritima, T. neapolitana, T. petrophila, and Thermotoga sp. strain RQ2) share a core genome of 1,470 open reading frames (ORFs), or about 75% of their genomes. Nonetheless, each species exhibited certain distinguishing features during growth on simple and complex carbohydrates that correlated with genomic inventories of specific ABC sugar transporters and glycoside hydrolases. These differences were consistent with transcriptomic analysis based on a multispecies cDNA microarray. Growth on a mixture of six pentoses and hexoses showed no significant utilization of galactose or mannose by any of the four species. T. maritima and T. neapolitana exhibited similar monosaccharide utilization profiles, with a strong preference for glucose and xylose over fructose and arabinose. Thermotoga sp. strain RQ2 also used glucose and xylose, but was the only species to utilize fructose to any extent, consistent with a phosphotransferase system (PTS) specific for this sugar encoded in its genome. T. petrophila used glucose to a significantly lesser extent than the other species. In fact, the XylR regulon was triggered by growth on glucose for T. petrophila, which was attributed to the absence of a glucose transporter (XylE2F2K2), otherwise present in the other Thermotoga species. This suggested that T. petrophila acquires glucose through the XylE1F1K1 transporter, which primarily serves to transport xylose in the other three Thermotoga species. The results here show that subtle differences exist among the hyperthermophilic Thermotogales with respect to carbohydrate utilization, which supports their designation as separate species.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Carboidratos , Glicosídeo Hidrolases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Técnicas de Tipagem Bacteriana , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Análise em Microsséries
19.
J Struct Biol ; 177(2): 469-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155669

RESUMO

The breakdown of ß-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of ß-mannanases. In this work, a two-domain ß-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/ß)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.


Assuntos
Proteínas de Bactérias/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Manosidases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Glucose/química , Cinética , Maltose/química , Manosidases/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Deleção de Sequência , Especificidade por Substrato , Propriedades de Superfície
20.
J Biol Chem ; 287(11): 8336-46, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22128157

RESUMO

Endo-ß-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (ß/α)(8)-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the ß-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu(167)-His(226)-Glu(283), which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp(61), Trp(204), Phe(231), and Trp(240) as well as polar residues Asn(51), His(127), Tyr(228), and His(235) in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature.


Assuntos
Adaptação Fisiológica/fisiologia , Celulase/química , Glucose/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Temperatura Alta , Sítios de Ligação , Catálise , Celulase/genética , Cristalografia por Raios X , Estabilidade Enzimática/fisiologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Ligação de Hidrogênio , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...