Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Agric Food Chem ; 72(27): 15345-15356, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38932522

RESUMO

The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.


Assuntos
Microbioma Gastrointestinal , Muco , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Glicosilação , Humanos , Espectrometria de Massas em Tandem/métodos , Muco/microbiologia , Muco/metabolismo , Muco/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Mucinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Células HT29 , Cromatografia Líquida/métodos , Bacteroides fragilis/metabolismo , Bacteroides fragilis/química , Bacteroides fragilis/fisiologia , Pasteurização , Akkermansia/metabolismo , Espectrometria de Massa com Cromatografia Líquida
2.
Gut Microbes ; 16(1): 2350156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726597

RESUMO

Extensive research has explored the role of gut microbiota in colorectal cancer (CRC). Nonetheless, metatranscriptomic studies investigating the in situ functional implications of host-microbe interactions in CRC are scarce. Therefore, we characterized the influence of CRC core pathogens and biofilms on the tumor microenvironment (TME) in 40 CRC, paired normal, and healthy tissue biopsies using fluorescence in situ hybridization (FISH) and dual-RNA sequencing. FISH revealed that Fusobacterium spp. was associated with increased bacterial biomass and inflammatory response in CRC samples. Dual-RNA sequencing demonstrated increased expression of pro-inflammatory cytokines, defensins, matrix-metalloproteases, and immunomodulatory factors in CRC samples with high bacterial activity. In addition, bacterial activity correlated with the infiltration of several immune cell subtypes, including M2 macrophages and regulatory T-cells in CRC samples. Specifically, Bacteroides fragilis and Fusobacterium nucleatum correlated with the infiltration of neutrophils and CD4+ T-cells, respectively. The collective bacterial activity/biomass appeared to exert a more significant influence on the TME than core pathogens, underscoring the intricate interplay between gut microbiota and CRC. These results emphasize how biofilms and core pathogens shape the immune phenotype and TME in CRC while highlighting the need to extend the bacterial scope beyond CRC pathogens to advance our understanding and identify treatment targets.


Assuntos
Biofilmes , Neoplasias Colorretais , Microbioma Gastrointestinal , Microambiente Tumoral , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Biofilmes/crescimento & desenvolvimento , Microambiente Tumoral/imunologia , Masculino , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Pessoa de Meia-Idade , Hibridização in Situ Fluorescente , Idoso , Fusobacterium nucleatum/imunologia , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Fenótipo , Bacteroides fragilis/imunologia , Bacteroides fragilis/fisiologia , Bacteroides fragilis/genética
3.
Int J Obes (Lond) ; 46(10): 1918-1924, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35978102

RESUMO

OBJECTIVE: Many animal experiments and epidemiological studies have shown that the gut microbiota (GM) plays an important role in the development of obesity, but the specific biological mechanism involved in the pathogenesis of disease remain unknown. We aimed to examine the relationships and functional mechanisms of GM on obesity in peri- and post-menopausal women. METHODS: We recruited 499 Chinese peri- and post-menopausal women and performed comprehensive analyses of the gut microbiome, targeted metabolomics for short-chain fatty acids in serum, and host whole-genome sequencing by various association analysis methods. RESULTS: Through constrained linear regression analysis, we found that an elevated abundance of Bacteroides fragilis (B. fragilis) was associated with obesity. We also found that serum levels of acetic acid were negatively associated with obesity, and that B. fragilis was negatively associated with serum acetic acid levels by partial Spearman correlation analysis. Mendelian randomization analysis indicated that B. fragilis increases the risk of obesity and may causally down-regulate acetic acid levels. CONCLUSIONS: We found the gut with B. fragilis may accelerate obesity, in part, by suppressing acetic acid levels. Therefore, B. fragilis and acetic acid may represent important therapeutic targets for obesity intervention in peri- and post-menopausal women.


Assuntos
Bacteroides fragilis , Microbioma Gastrointestinal , Ácido Acético , Bacteroides fragilis/fisiologia , Feminino , Humanos , Obesidade , Pós-Menopausa
4.
Food Funct ; 13(2): 1015-1025, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35015021

RESUMO

Bacteroides fragilis, one of the potential next-generation probiotics, has been demonstrated to alleviate inflammation-associated diseases. In this study, we compare the anti-inflammatory effects of six Bacteroides fragilis strains on systemic inflammation and link their strain-specific characteristics, both physiologically and genetically, to their function. A lipopolysaccharide (LPS)-induced systemic inflammation model in mice was used as an in vivo model to compare the effects of different B. fragilis strains. Short-chain fatty acids (SCFAs) were measured by gas chromatography-mass spectrometry (GC-MS). The in vitro immunomodulatory properties were evaluated in LPS-stimulating RAW264.7 cell lines. Orthologous gene clusters were compared using OrthoVenn2. The results indicate a strain-specific in vitro anti-inflammatory effect. Effective strains induce higher colon SCFAs in vivo and interleukin-10 (IL-10) production in vitro. Comparative genomic analysis showed that the SCFA-inducing strains possess three genes relating to carbohydrate metabolism (GH2, GH35 families) and binding and transportation (SusD), all of which are associated with niche fitness and expansion. IL-10-inducing strains share a highly similar gene, wbjE, which may result in a distinct O-antigen structure of LPS and influence their immunomodulatory properties. B. fragilis is strain-specific against LPS-induced systemic inflammation in mice. The beneficial effects of a specific strain may be attributed to its SCFA and IL-10 inducing abilities. Strain-specific potential genes can be excavated to link these differences.


Assuntos
Bacteroides fragilis/fisiologia , Inflamação/terapia , Lipopolissacarídeos/toxicidade , Probióticos/uso terapêutico , Animais , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA Bacteriano , RNA Ribossômico 16S
5.
Infect Immun ; 90(1): e0032121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34606367

RESUMO

The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis. We also discuss the protective roles of single commensal-derived probiotic species, including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.


Assuntos
Bacteroides fragilis/fisiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações Microbianas , Viroses/etiologia , Viroses/terapia , Antibiose , Citocinas/metabolismo , Gerenciamento Clínico , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Especificidade de Órgãos , Polissacarídeos Bacterianos/imunologia , Probióticos , Simbiose , Tuberculose/etiologia , Viroses/metabolismo
6.
Infect Immun ; 90(1): e0046921, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662212

RESUMO

The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B12, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space-in contrast to an oxidative environment in aerobes-it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.


Assuntos
Proteínas de Bactérias/genética , Infecções por Bacteroides/microbiologia , Infecções por Bacteroides/mortalidade , Bacteroides fragilis/fisiologia , Infecções Intra-Abdominais/microbiologia , Infecções Intra-Abdominais/mortalidade , Proteínas de Membrana/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Mapeamento Cromossômico , Modelos Animais de Doenças , Ordem dos Genes , Interações Hospedeiro-Patógeno , Proteínas de Membrana/química , Camundongos , Mutação
7.
Cancer Lett ; 523: 170-181, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34627951

RESUMO

Patients with persistent ulcerative colitis (UC) are at a higher risk of developing colitis-associated cancer (CAC). Previous studies have reported that intestinal microbiota disturbance plays an important role in the process of CAC development in patients with UC, indicating that targeted intervention of intestinal microbiota and its metabolites may be a potential therapeutic strategy. Gut microbiota in the process of colorectal cancer development in UC patients was analyzed using the gutMEGA database and verified in fecal samples. The abundance of Bacteroides fragilis reduced significantly in the process of colitis associated cancer development. Broad-spectrum antibiotics (BSAB) intervene with the intestinal microbiota of mice and accelerate the process of colon cancer development. However, gavage transplantation with B. fragilis can effectively reverse the effects of BSAB. In the intestinal tract, B. fragilis promotes the secretion of short-chain fatty acids (SCFAs). Subsequently, SCFAs, especially butyrate, negatively regulate the inflammatory signaling pathway mediated by NLRP3 to inhibit the activation of macrophages and the secretion of proinflammatory mediators such as IL-18 and IL-1ß, reducing the level of intestinal inflammation and restricting CAC development. In conclusion, colonization with B. fragilis has been shown to be effective in ameliorating intestinal epithelial damage caused by chronic inflammation and preventing the development of colonic tumors. Thus, it can be a therapeutic intervention strategy with good clinical application prospects.


Assuntos
Bacteroides fragilis/fisiologia , Colite Ulcerativa/complicações , Neoplasias Associadas a Colite/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Butiratos/farmacologia , Disbiose , Ácidos Graxos Voláteis/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Cell Host Microbe ; 29(10): 1589-1598.e6, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34536346

RESUMO

Colorectal cancer is a major health concern worldwide. Growing evidence for the role of the gut microbiota in the initiation of CRC has sparked interest in approaches that target these microorganisms. However, little is known about the composition and role of the microbiota associated with precancerous polyps. Here, we found distinct microbial signatures between patients with and without polyps and between polyp subtypes using sequencing and culturing techniques. We found a correlation between Bacteroides fragilis recovered and the level of inflammatory cytokines in the mucosa adjacent to the polyp. Additional analysis revealed that B. fragilis from patients with polyps are bft-negative, activate NF-κB through Toll-like receptor 4, induce a pro-inflammatory response, and are enriched in genes associated with LPS biosynthesis. This study provides fundamental insight into the microbial microenvironment of the pre-neoplastic polyp by highlighting strain-specific genomic and proteomic differences, as well as more broad compositional differences in the microbiome.


Assuntos
Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Idoso , Bacteroides fragilis/classificação , Bacteroides fragilis/fisiologia , Pólipos do Colo/imunologia , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Genômica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Filogenia , Simbiose
9.
Cancer Discov ; 11(7): 1792-1807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632774

RESUMO

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Bacteroides fragilis/fisiologia , Neoplasias Colorretais/microbiologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mutação
10.
Res Microbiol ; 172(2): 103798, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485914

RESUMO

The exposure of Bacteroides fragilis to highly oxygenated tissues induces an oxidative stress due to a shift from the reduced condition of the gastrointestinal tract to an aerobic environment of host tissues. The potent and effective responses to reactive oxygen species (ROS) make the B. fragilis tolerant to atmospheric oxygen for several days. The response to oxidative stress in B. fragilis is a complicated event that is induced and regulated by different agents. In this review, we will focus on the B. fragilis response to oxidative stress and present an overview of the regulators of responses to oxidative stress in this bacterium.


Assuntos
Bacteroides fragilis/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/química , Resposta SOS em Genética , Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla , Ferritinas/fisiologia , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Fator sigma/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Virulência
11.
J Gastroenterol Hepatol ; 36(1): 75-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32198788

RESUMO

The human colon harbors a high number of microorganisms that were reported to play a crucial role in colorectal carcinogenesis. In the recent decade, molecular detection and metabolomic techniques have expanded our knowledge on the role of specific microbial species in promoting tumorigenesis. In this study, we reviewed the association between microbial dysbiosis and colorectal carcinoma (CRC). Various microbial species and their association with colorectal tumorigenesis and red/processed meat consumption have been reviewed. The literature demonstrated a significant abundance of Fusobacterium nucleatum, Streptococcus bovis/gallolyticus, Escherichia coli, and Bacteroides fragilis in patients with adenoma or adenocarcinoma compared to healthy individuals. The mechanisms in which each organism was postulated to promote colon carcinogenesis were collated and summarized in this review. These include the microorganisms' ability to adhere to colon cells; modulate the inhibition of tumor suppressor genes, the activations of oncogenes, and genotoxicity; and activate downstream targets responsible for angiogenesis. The role of these microorganisms in conjugation with meat components including N-nitroso compounds, heterocyclic amines, and heme was also evident in multiple studies. The outcome of this review supports the role of red meat consumption in modulating CRC progression and the possibility of gut microbiome influencing the relationship between CRC and diet. The study also demonstrates that microbiota analysis could potentially complement existing screening methods when detecting colonic lesions.


Assuntos
Adenocarcinoma/etiologia , Adenocarcinoma/microbiologia , Adenoma/etiologia , Adenoma/microbiologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Carne Vermelha/efeitos adversos , Adenocarcinoma/patologia , Adenoma/patologia , Aderência Bacteriana , Bacteroides fragilis/fisiologia , Carcinogênese , Neoplasias Colorretais/patologia , Dano ao DNA , Disbiose , Escherichia coli/fisiologia , Feminino , Fusobacterium nucleatum/fisiologia , Genes Supressores de Tumor , Humanos , Masculino , Oncogenes , Streptococcus bovis/fisiologia , Streptococcus gallolyticus/fisiologia
12.
Cell ; 183(5): 1312-1324.e10, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212011

RESUMO

Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-ß by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-ß was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-ß. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-ß expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-ß. In a murine VSV infection model, commensal-induced IFN-ß regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-ß-inducing microbial molecule represents a potential approach for the treatment of some human diseases.


Assuntos
Imunidade Inata , Microbiota , Viroses/microbiologia , Animais , Bacteroides fragilis/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colo/patologia , Colo/virologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicolipídeos/metabolismo , Imunidade Inata/efeitos dos fármacos , Interferon beta/sangue , Interferon beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Receptor 4 Toll-Like/metabolismo , Vesiculovirus/fisiologia , Viroses/genética
13.
Benef Microbes ; 11(4): 391-401, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32720833

RESUMO

Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.


Assuntos
Translocação Bacteriana , Bacteroides fragilis/fisiologia , Mucosa Intestinal/microbiologia , Salmonella/fisiologia , Translocação Bacteriana/efeitos dos fármacos , Bacteroides fragilis/metabolismo , Células CACO-2 , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células HT29 , Humanos , Mucosa Intestinal/citologia , Interações Microbianas , Modelos Biológicos , Probióticos/metabolismo , Probióticos/farmacologia
14.
Eur J Pharmacol ; 884: 173421, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32721450

RESUMO

Emerging evidences indicated that the dysbiosis of microbiota was related to the onset of systemic lupus erythematosus (SLE). Bacteroides fragilis (B. fragilis) ATCC 25285, a human commensal, was discovered to improve inflammatory diseases. However, whether B. fragilis (ATCC 25285) has the beneficial effects on the treatment of lupus nephritis has still remained elusive. In the present study, oral treatment with B. fragilis (ATCC 25285) ameliorated the activity of MRL/lpr mice, including decreased levels of autoantibodies and symptoms of lupus nephritis. Furthermore, we demonstrated that treatment with B. fragilis (ATCC 25285) could promote CD1d expression in B cells by Est-1 pathway, while inhibit CD86 expression via SHP-2 signaling pathway to repair the immune response of B cells in MRL/lpr mice. In addition, our findings revealed a possible role of treatment with B. fragilis (ATCC 25285) in relieving intestinal inflammation in MRL/lpr mice. Meanwhile, it was uncovered that B. fragilis (ATCC 25285) restored the Th17/Treg balance in MRL/lpr mice that was consistent with the role of B. fragilis in other autoimmune diseases. Overall, the current study may highlight the potential application of B. fragilis (ATCC 25285) to treat manifestations of SLE in high-risk individuals.


Assuntos
Antígenos CD1d/metabolismo , Linfócitos B/microbiologia , Antígeno B7-2/metabolismo , Bacteroides fragilis/fisiologia , Nefrite Lúpica/terapia , Probióticos , Animais , Antígenos CD1d/imunologia , Autoanticorpos/sangue , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígeno B7-2/imunologia , Modelos Animais de Doenças , Feminino , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/microbiologia
15.
Anaerobe ; 64: 102232, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32634470

RESUMO

Several factors affect the composition of species that inhabit our intestinal tract, including mode of delivery, genetics and nutrition. Antimicrobial peptides and proteins secreted in the gastrointestinal tract are powerful tools against bacteria. Lactoferrin (LF) inhibits the growth of several bacterial species, such as Enterobacteriaceae, but may stimulate probiotic bacteria. Activity of LF against gut symbiotic species of the Bacteroides genus could give us insights on how these species colonize the gut. We investigated the effects of the antimicrobial protein lactoferrin and its derived peptide, lactoferricin B on two species of strict anaerobes, opportunistic pathogens that cause diseases in both adults and children, commonly found in the microbiota of the human gastrointestinal tract, Bacteroides fragilis and B. thetaiotaomicron., In vitro biofilm formation and binding to laminin were strongly inhibited by a low concentration of lactoferrin (12.5 µg/ml). Conversely, the growth of the strains in a micro-dilution assay in minimal media with different iron sources was not affected by physiological concentrations (2 mg/ml) of apo-lactoferrin or holo-lactoferrin. The combination of lactoferrin with antibiotics in synergism assays was also negative. The lactoferricin B fragment was also unable to inhibit growth in a similar test with concentrations of up to 32 µg/ml. Resistance to lactoferrin could confer an advantage to these species, even when high amount of this protein is present in the gastrointestinal tract. However, colonization is hampered by the binding and biofilm inhibitiory effect of lactoferrin, which may explain the low prevalence of Bacteroides in healthy babies. Resistance to this antimicrobial protein may help understand the success of these opportunistic pathogens during infection in the peritoneum.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Bacteroides/efeitos dos fármacos , Bacteroides/fisiologia , Biofilmes/efeitos dos fármacos , Lactoferrina/farmacologia , Antibacterianos/farmacologia , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/fisiologia , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/fisiologia , Trato Gastrointestinal/microbiologia , Humanos
16.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32332136

RESUMO

Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Previous studies have shown that Bacteroidetes, the major phylum of gut microbiota together with Firmicutes, impact IgA production. However, the relative abundances of species of Bacteroidetes responsible for IgA production were not well understood. In the present study, we identified some specific Bacteroidetes species that were associated with gut IgA induction by hsp60-based profiling of species distribution among Bacteroidetes The levels of IgA and the expression of the gene encoding activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were increased in soluble high-fiber diet (sHFD)-fed mice. We found that Bacteroides acidifaciens was the most abundant Bacteroidetes species in both sHFD- and normal diet-fed mice. In addition, the gut IgA levels were associated with the relative abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens Conversely, the ratio of B. acidifaciens to other Bacteroidetes species was reduced in insoluble high-fiber diet fed- and no-fiber diet-fed mice. To investigate whether B. acidifaciens increases IgA production, we generated B. acidifaciens monoassociated mice and found increased gut IgA production and AID expression. Collectively, soluble dietary fiber increases the ratio of gut Bacteroides fragilis group, such as B. acidifaciens, and IgA production. This might improve gut immune function, thereby protecting against bowel pathogens and reducing the incidence of inflammatory bowel diseases.IMPORTANCE Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Gut microbiota impact IgA production, but the specific species responsible for IgA production remain largely elusive. Previous studies have shown that IgA and Bacteroidetes, the major phyla of gut microbiota, were increased in soluble high-fiber diet-fed mice. We show here that the levels of IgA in the gut and the expression of activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were correlated with the abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciensB. acidifaciens monoassociated mice increased gut IgA production and AID expression. Soluble dietary fiber may improve gut immune function, thereby protecting against bowel pathogens and reducing inflammatory bowel diseases.


Assuntos
Bacteroides fragilis/fisiologia , Fibras na Dieta/metabolismo , Imunoglobulina A/biossíntese , Animais , Chaperonina 60 , Fibras na Dieta/administração & dosagem , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais
17.
Nat Microbiol ; 5(5): 746-756, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152589

RESUMO

A complex microbiota inhabits various microenvironments of the gut, with some symbiotic bacteria having evolved traits to invade the epithelial mucus layer and reside deep within the intestinal tissue of animals. Whether these distinct bacterial communities across gut biogeographies exhibit divergent behaviours is largely unknown. Global transcriptomic analysis to investigate microbial physiology in specific mucosal niches has been hampered technically by an overabundance of host RNA. Here, we employed hybrid selection RNA sequencing (hsRNA-Seq) to enable detailed spatial transcriptomic profiling of a prominent human commensal as it colonizes the colonic lumen, mucus or epithelial tissue of mice. Compared to conventional RNA-Seq, hsRNA-Seq increased reads mapping to the Bacteroides fragilis genome by 48- and 154-fold in mucus and tissue, respectively, allowing for high-fidelity comparisons across biogeographic sites. Near the epithelium, B. fragilis upregulated numerous genes involved in protein synthesis, indicating that bacteria inhabiting the mucosal niche are metabolically active. Further, a specific sulfatase (BF3086) and glycosyl hydrolase (BF3134) were highly induced in mucus and tissue compared to bacteria in the lumen. In-frame deletion of these genes impaired in vitro growth on mucus as a carbon source, as well as mucosal colonization of mice. Mutants in either B. fragilis gene displayed a fitness defect in competing for colonization against bacterial challenge, revealing the importance of site-specific gene expression for robust host-microbial symbiosis. As a versatile tool, hsRNA-Seq can be deployed to explore the in vivo spatial physiology of numerous bacterial pathogens or commensals.


Assuntos
Bacteroides fragilis/genética , Bacteroides fragilis/fisiologia , Colo/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/crescimento & desenvolvimento , Colite/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Ácidos Sulfônicos , Simbiose , Transcriptoma
18.
Can J Microbiol ; 66(6): 389-399, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32073898

RESUMO

The rapid increase in antibiotic resistance has prompted the discovery of drugs that reduce antibiotic resistance or new drugs that are an alternative to antibiotics. Plant extracts have health benefits and may also exhibit antibacterial and antibiofilm activities against pathogens. This study determined the antibacterial and antibiofilm effects of α-humulene extracted from plants against enterotoxigenic Bacteroides fragilis, which causes inflammatory bowel disease. The minimum inhibitory concentration and biofilm inhibitory concentration of α-humulene for B. fragilis were 2 µg/mL, and the biofilm eradication concentration was in the range of 8-32 µg/mL. The XTT reduction assay confirmed that the cellular metabolic activity in biofilm rarely occurred at the concentration of 8-16 µg/mL. In addition, biofilm inhibition by α-humulene was also detected via confocal laser scanning microcopy. Quantitative real-time polymerase chain reaction (qPCR) was also used to investigate the effect of α-humulene on the expression of resistance-nodulation-cell division type multidrug efflux pump genes (bmeB1 and bmeB3). According to the results of qPCR, α-humulene significantly reduced the expression of bmeB1 and bmeB3 genes. This study demonstrates the potential therapeutic application of α-humulene for inhibiting the growth of B. fragilis cells and biofilms, and it expands the knowledge about biofilm medicine.


Assuntos
Antibacterianos/farmacologia , Infecções por Bacteroides/tratamento farmacológico , Bacteroides fragilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Sesquiterpenos Monocíclicos/farmacologia , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/crescimento & desenvolvimento , Bacteroides fragilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Extratos Vegetais/farmacologia
19.
Circ Res ; 126(7): 839-853, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32078445

RESUMO

RATIONALE: High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt-induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated. OBJECTIVE: To reveal the roles and mechanisms of intestinal flora in hSIH development. METHODS AND RESULTS: The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced Bacteroides and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal Bacteroides fragilis could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid. CONCLUSIONS: hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of B fragilis and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Corticosterona/biossíntese , Microbioma Gastrointestinal/fisiologia , Hipertensão/fisiopatologia , Intestinos/química , Animais , Ácido Araquidônico/metabolismo , Bacteroides fragilis/fisiologia , Corticosterona/sangue , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , Hipertensão/etiologia , Hipertensão/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Metabolômica/métodos , Ratos Wistar , Cloreto de Sódio na Dieta/efeitos adversos
20.
J Microbiol Biotechnol ; 30(3): 368-377, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32066216

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is the main pathogen causing severe inflammatory diseases and colorectal cancer. Its biofilm plays a key role in the development of colorectal cancer. The objective of this study was to determine the antagonistic effects of cell-free supernatants (CFS) derived from Clostridium butyricum against the growth and biofilm of ETBF. Our data showed that C. butyricum CFS inhibited the growth of B. fragilis in planktonic culture. In addition, C. butyricum CFS exhibited an antibiofilm effect by inhibiting biofilm development, disassembling preformed biofilms and reducing the metabolic activity of cells in biofilms. Using confocal laser scanning microscopy, we found that C. butyricum CFS significantly suppressed the proteins and extracellular nucleic acids among the basic biofilm components. Furthermore, C. butyricum CFS significantly downregulated the expression of virulence- and efflux pump-related genes including ompA and bmeB3 in B. fragilis. Our findings suggest that C. butyricum can be used as biotherapeutic agent by inhibiting the growth and biofilm of ETBF.


Assuntos
Bacteroides fragilis/fisiologia , Biofilmes , Clostridium butyricum , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Probióticos/farmacologia , Antibacterianos/farmacologia , Bacteroides fragilis/efeitos dos fármacos , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...