Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Hear Res ; 384: 107810, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726328

RESUMO

In modern Cetacea, the ear bone complex comprises the tympanic and periotic bones forming the tympano-periotic complex (TPC), differing from temporal bone complexes of other mammals in form, construction, position, and possibly function. To elucidate its functioning in sound transmission, we studied the vibration response of 32 pairs of formaldehyde-glutaraldehyde-fixed TPCs of Globicephala macrorhynchus, the short-finned pilot whale (legally obtained in Taiji, Japan). A piezoelectric-crystal-based vibrator was surgically attached to a location on the cochlea near the exit of the acoustic nerve. The crystal delivered vibrational pulses through continuous sweeps from 5 to 50 kHz. The vibration response was measured as a function of frequency by Laser Doppler Vibrometry at five points on the TPC. The aim of the experiment was to clarify how the vibration amplitudes produced by different frequencies are distributed on the TPC. At the lowest frequencies (<12 kHz), no clear differential pattern emerged. At higher frequencies the anterolateral lip of the TP responded most sensitively with the highest displacement amplitudes, and response amplitudes decreased in orderly fashion towards the posterior part of the TPC. We propose that this works as a lever: high-frequency sounds are most sensitively received and cause the largest vibration amplitudes at the anterior part of the TP, driving movements with lower amplitude but greater force near the posteriorly located contact to the ossicular chain, which transmits the movements into the inner ear. Although force (pressure) amplification is not needed for impedance matching in water, it may be useful for driving the stiffly connected ossicles at the high frequencies used in echolocation.


Assuntos
Ossículos da Orelha/fisiologia , Ecolocação , Audição , Mecanotransdução Celular , Som , Membrana Timpânica/fisiologia , Baleias Piloto/fisiologia , Fatores Etários , Animais , Ossículos da Orelha/anatomia & histologia , Movimento (Física) , Pressão , Membrana Timpânica/anatomia & histologia , Vibração , Baleias Piloto/anatomia & histologia
2.
J Acoust Soc Am ; 142(4): 1901, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092562

RESUMO

Acoustic properties of odontocete head tissues, including sound velocity, density, and acoustic impedance, are important parameters to understand dynamics of its echolocation. In this paper, acoustic properties of head tissues from a freshly dead short-finned pilot whale (Globicephala macrorhynchus) were reconstructed using computed tomography (CT) and ultrasound. The animal's forehead soft tissues were cut into 188 ordered samples. Sound velocity, density, and acoustic impedance of each sample were either directly measured or calculated by formula, and Hounsfield Unit values (HUs) were obtained from CT scanning. According to relationships between HUs and sound velocity, HUs and density, as well as HUs and acoustic impedance, distributions of acoustic properties in the head were reconstructed. The inner core in the melon with low-sound velocity and low-density is an evidence for its potential function of sound focusing. The increase in acoustic impedance of forehead tissues from inner core to outer layer may be important for the acoustic impedance matching between the outer layer tissue and seawater. In addition, temperature dependence of sound velocity in soft tissues was also examined. The results provide a guide to the simulation of the sound emission of the short-finned pilot whale.


Assuntos
Acústica , Ecolocação , Cabeça/fisiologia , Som , Temperatura , Vocalização Animal , Baleias Piloto/fisiologia , Animais , Ecolocação/classificação , Feminino , Cabeça/anatomia & histologia , Cabeça/diagnóstico por imagem , Movimento (Física) , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Tomografia Computadorizada por Raios X , Ultrassonografia , Vocalização Animal/classificação , Baleias Piloto/anatomia & histologia , Baleias Piloto/classificação
3.
Int. j. morphol ; 32(4): 1399-1406, Dec. 2014. ilus
Artigo em Espanhol | LILACS | ID: lil-734690

RESUMO

Existe una estrecha relación entre las características morfológicas de los sistemas sensoriales, su funcionamiento y el hábitat al que están adaptados los organismos. En este sentido, de todos los mamíferos marinos estudiados, los cetáceos son los que más profundamente han modificado su estructura y fisiología ocular por su estrecha adaptación a una vida exclusivamente acuática. Para aportar más datos a la literatura, el objetivo de este trabajo es describir morfológicamente la retina de la ballena piloto a través de técnicas de microscopia óptica, con el fin de relacionarla con su adaptación al medio acuático. Nuestros datos muestran que la retina de Globicephala melas se organiza de acuerdo al mismo plan básico de los vertebrados. Tiene un grosor medio alrededor de 330±23 µm en las zonas de alta densidad de células ganglionares y 175±2 µm en la zona periférica. La capa de los fotorreceptores se corresponde con el 45% del grosor de la retina total. Presenta largos segmentos externos. La capa más característica de cetáceos en general y de Globicephala melas en particular, es la capa de células ganglionares. Su grosor, de 77,76±37,26 siendo la más variable de toda la retina. Esta capa presenta baja densidad celular pero tamaños excepcionalmente grandes, de 10 a 75 µm (promedio de 33,5 µm), denominadas células ganglionares gigantes.


There is a close relationship between morphological features of sensory systems, their function and habitat to which these organisms are adapting. In this sense, of all marine mammals that have been studied, cetaceans are the ones that have profoundly changed structure and ocular physiology in their adaptation to an exclusively aquatic life. To add further data to the literature, the aim of this paper is to describe morphologically the retina of the pilot whale through optical microscopy and relate their adaptation to the aquatic environment. Our data show that the retina of the long-finned pilot whale is organized according to the same basic plan of vertebrates. It has an average thickness of about 330±23 microns in areas of high ganglion cell density of 175±2 microns in the peripheral zone. Photoreceptor layer corresponds to 45% of total thickness of the retina and has long outer segments. The most significant characteristic of cetaceans in general and long-finned pilot whale in particular, is the ganglion cell layer. Thickness of 77.76±37.26 being the most variable of the entire retina. This layer has a low density but exceptionally large cell size of 10 to 75 microns (average of 33.5 microns), known as giant ganglion cells.


Assuntos
Animais , Retina/ultraestrutura , Ecossistema , Baleias Piloto/anatomia & histologia , Retina/citologia , Microscopia
4.
Vet Ophthalmol ; 8(6): 375-85, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16359360

RESUMO

OBJECTIVE: To examine the anatomy of the ciliary body in the West Indian manatee (Trichechus manatus), paying close attention to its vascularization and to compare to those of its distant relative, the African elephant (Loxodonta africana), the amphibious hippopotamus (Hippopotamus amphibius) and the aquatic short-finned pilot whale (Globicephala macrorhynchus). PROCEDURE: Specimens from each species were preserved in 10% buffered formalin, and observed stereomicroscopically before being embedded in paraffin, sectioned and stained by Masson trichrome, hematoxylin and eosin, and periodic acid-Schiff for light microscopic evaluation. RESULTS: The network of blood vessels in the ciliary processes of the West Indian manatee appear to have an intricate pattern, especially with regard to venous outflow. Those of the elephant are slightly less complex, while those of the hippopotamus and whale have different vascular patterns within the ciliary body. Musculature within the ciliary body is absent within the manatee and pilot whale. CONCLUSIONS: In general, there appears to be a direct relationship between the increased development of vasculature and the loss of musculature within the ciliary bodies of the aquatic and amphibious mammals presently studied. Specifically, the ciliary body of the West Indian manatee has a comparatively unique construction, especially with regard to its vasculature.


Assuntos
Corpo Ciliar/anatomia & histologia , Corpo Ciliar/irrigação sanguínea , Mamíferos/anatomia & histologia , Trichechus manatus/anatomia & histologia , Animais , Artiodáctilos/anatomia & histologia , Artiodáctilos/fisiologia , Corpo Ciliar/patologia , Elefantes/anatomia & histologia , Elefantes/fisiologia , Imuno-Histoquímica/veterinária , Fluxo Sanguíneo Regional , Especificidade da Espécie , Trichechus manatus/fisiologia , Baleias Piloto/anatomia & histologia , Baleias Piloto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...