Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.361
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2322577121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968104

RESUMO

Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Estimulação do Nervo Vago , Nervo Vago , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/imunologia , Ratos , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Estimulação do Nervo Vago/métodos , Inflamação/terapia , Inflamação/patologia , Modelos Animais de Doenças , Feminino , Bainha de Mielina/metabolismo , Barreira Hematoencefálica
2.
ACS Appl Mater Interfaces ; 16(28): 36168-36193, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954488

RESUMO

In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3ß inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.


Assuntos
Antioxidantes , Bivalves , Lesões Encefálicas Traumáticas , Indóis , Nanocompostos , Neurogênese , Estresse Oxidativo , Polímeros , Indóis/química , Indóis/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Polímeros/química , Polímeros/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Nanocompostos/química , Bivalves/química , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Dióxido de Silício/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Masculino
3.
ACS Appl Mater Interfaces ; 16(28): 35898-35911, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954799

RESUMO

Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-ß (Aß) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aß. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aß fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.


Assuntos
Doença de Alzheimer , Cério , Membrana Eritrocítica , Pontos Quânticos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Animais , Cério/química , Cério/farmacologia , Camundongos , Membrana Eritrocítica/química , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Raios Infravermelhos , Carbono/química , Carbono/farmacologia , Terapia Fototérmica , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Nanocompostos/química , Nanocompostos/uso terapêutico
4.
Theranostics ; 14(10): 4076-4089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994029

RESUMO

Metastatic tumours in the brain now represent one of the leading causes of death from cancer. Current treatments are largely ineffective owing to the combination of late diagnosis and poor delivery of therapies across the blood-brain barrier (BBB). Conjugating magnetic resonance imaging (MRI) contrast agents with a monoclonal antibody for VCAM-1 (anti-VCAM1) has been shown to enable detection of micrometastases, two to three orders of magnitude smaller in volume than those currently detectable clinically. The aim of this study was to exploit this targeting approach to enable localised and temporary BBB opening at the site of early-stage metastases using functionalised microbubbles and ultrasound. Methods: Microbubbles functionalised with anti-VCAM1 were synthesised and shown to bind to VCAM-1-expressing cells in vitro. Experiments were then conducted in vivo in a unilateral breast cancer brain metastasis mouse model using Gadolinium-DTPA (Gd-DTPA) enhanced MRI to detect BBB opening. Following injection of Gd-DTPA and targeted microbubbles, the whole brain volume was simultaneously exposed to ultrasound (0.5 MHz, 10% duty cycle, 0.7 MPa peak negative pressure, 2 min treatment time). T1-weighted MRI was then performed to identify BBB opening, followed by histological confirmation via immunoglobulin G (IgG) immunohistochemistry. Results: In mice treated with targeted microbubbles and ultrasound, statistically significantly greater extravasation of Gd-DTPA and IgG was observed in the left tumour-bearing hemisphere compared to the right hemisphere 5 min after treatment. No acute adverse effects were observed. There was no investigation of longer term bioeffects owing to the nature of the study. Conclusion: The results demonstrate the feasibility of using targeted microbubbles in combination with low intensity ultrasound to localise opening of the BBB to metastatic sites in the brain. This approach has potential application in the treatment of metastatic tumours whose location cannot be established a priori with conventional imaging methods.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Microbolhas , Molécula 1 de Adesão de Célula Vascular , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Molécula 1 de Adesão de Célula Vascular/metabolismo , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Modelos Animais de Doenças , Ultrassonografia/métodos , Linhagem Celular Tumoral , Gadolínio DTPA/administração & dosagem , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
5.
Int J Oncol ; 65(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994761

RESUMO

Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. The current standard of care includes surgery, radiation therapy, temozolomide; and tumor­treating fields leads to dismal overall survival. There are far limited treatments upon recurrence. Therapies to date are ineffective as a result of several factors, including the presence of the blood­brain barrier, blood tumor barrier, glioma stem­like cells and genetic heterogeneity in GBM. In the present review, the potential mechanisms that lead to treatment resistance in GBM and the measures which have been taken so far to attempt to overcome the resistance were discussed. The complex biology of GBM and lack of comprehensive understanding of the development of therapeutic resistance in GBM demands discovery of novel antigens that are targetable and provide effective therapeutic strategies.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Barreira Hematoencefálica/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Terapia de Alvo Molecular/métodos
7.
ACS Appl Mater Interfaces ; 16(28): 35925-35935, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950334

RESUMO

The development of efficient theranostic nanoagents for the precise diagnosis and targeted therapy of glioblastoma (GBM) remains a big challenge. Herein, we designed and developed porphyrin-based organic nanoparticles (PNP NPs) with strong emission in the near-infrared IIa window (NIR-IIa) for orthotopic GBM theranostics. PNP NPs possess favorable photoacoustic and photothermal properties, high photostability, and low toxicity. After modification with the RGD peptide, the obtained PNPD NPs exhibited enhanced blood-brain barrier (BBB) penetration capability and GBM targeting ability. NIR-IIa imaging was employed to monitor the in vivo biodistribution and accumulation of the nanoparticles, revealing a significant enhancement in penetration depth and signal-to-noise ratio. Both in vitro and in vivo results demonstrated that PNPD NPs effectively inhibited the proliferation of tumor cells and induced negligible side effects in normal brain tissues. In general, the work presented a kind of brain-targeted porphyrin-based NPs with NIR-IIa fluorescence for orthotopic glioblastoma theranostics, showing promising prospects for clinical translation.


Assuntos
Glioblastoma , Nanopartículas , Porfirinas , Nanomedicina Teranóstica , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Animais , Nanopartículas/química , Humanos , Porfirinas/química , Porfirinas/farmacologia , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Raios Infravermelhos , Distribuição Tecidual , Barreira Hematoencefálica/metabolismo , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fluorescência
8.
CNS Neurosci Ther ; 30(7): e14825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954749

RESUMO

AIMS: Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS: We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS: rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION: Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.


Assuntos
Fibrinolíticos , Neutrófilos , Proteínas Recombinantes , Ativador de Plasminogênio Tecidual , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Humanos , Masculino , Neutrófilos/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos Sprague-Dawley , Idoso , Barreira Hematoencefálica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Infiltração de Neutrófilos/efeitos dos fármacos , Pessoa de Meia-Idade , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/imunologia , Modelos Animais de Doenças
9.
FASEB J ; 38(13): e23790, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38982638

RESUMO

Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1ß, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.


Assuntos
Barreira Hematoencefálica , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Animais , Camundongos , Piperazinas/farmacologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Oxazinas/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/efeitos adversos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Masculino , Antirretrovirais/efeitos adversos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
10.
Sci Rep ; 14(1): 15844, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982309

RESUMO

Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.


Assuntos
Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Simulação por Computador , Descoberta de Drogas/métodos
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1088-1097, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977338

RESUMO

OBJECTIVE: To investigate the effect of the aqueous extract of Chuan Xiong Rhizoma (CR) on brain metastasis of melanoma B16F10 cells in mice. METHODS: C57BL/6J mouse models of brain metastasis of melanoma were established by ultrasound-guided intraventricular injection of Luc-labeled B16F10 cells, and brain tumor growth was monitored by in vivo imaging. The mouse models were then randomized for daily gavage of saline or aqueous extract of CR (equivalent crude drug concentration of 1 mg/g). Behavioral tests were used to evaluate the neuroprotective effects of CR in the tumor-bearing mice, and the changes in proteins associated with blood-brain barrier integrity, neuronal cell proliferation and apoptosis, and microglial cell apoptosis and activation were observed using immunofluorescence assay. The efficacy of CR combined with temozolomide (25 mg/kg) against brain metastases of B16F10 cells was observed by in vivo imaging. RESULTS: CR-treated mouse models did not show obvious progression of brain metastases and had a reduced rate of body weight loss and lowered protein expressions of ZO-1, claudin-5, occludin, P-gp, TNF-α, AQP4 and PDGFRß. In the behavioral tests, the CR-treated mice showed prolonged stay on the wooden stick with a shortened time of sticky stick removal. Immunofluorescence assay showed increased proliferation and decreased apoptosis of neuronal cells and microglia in CR-treated mice. CR treatment significantly increased the levels of CD86, CD206, IL-4 and IL-10 and decreased the levels of CD163 and IL-1ß in the microenvironment of brain metastases. The mice receiving combined treatments with CR and temozolomide showed significantly lower intensity of fluorescent signals in the brain than those treated with temozolomide alone. CONCLUSION: CR does not promote brain metastasis of melanoma while inducing opening of the blood-brain barrier, and its combined use with TMZ results in enhanced inhibition against brain metastasis of melanoma B16F10 cells in mice.


Assuntos
Neoplasias Encefálicas , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Temozolomida , Animais , Temozolomida/farmacologia , Camundongos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia
12.
Sci Rep ; 14(1): 15960, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987294

RESUMO

Non-invasive imaging of GSK-3 expression in the brain will help to understand the role of GSK-3 in disease pathology and progression. Herein, we report the radiosynthesis and evaluation of two novel isonicotinamide based 18F labeled PET probes, [18F]2 and [18F]6 for noninvasive imaging of GSK3. Among the developed PET probes, the in vitro blood-brain permeability coefficient of 2 (38 ± 20 × 10-6 cm/s, n = 3) was found to be better than 6 (8.75 ± 3.90 × 10-6 cm/s, n = 5). The reference compounds 2 and 6 showed nanomolar affinity towards GSK-3α and GSK-3ß. PET probe [18F]2 showed higher stability (100%) in mouse and human serums compared to [18F]6 (67.01 ± 4.93%, n = 3) in mouse serum and 66.20 ± 6.38%, n = 3) in human serum at 120 min post incubation. The in vivo imaging and blocking studies were performed in wild-type mice only with [18F]2 due to its observed stability. [18F]2 showed a SUV of 0.92 ± 0.28 (n = 6) in mice brain as early as 5 min post-injection followed by gradual clearance over time.


Assuntos
Encéfalo , Radioisótopos de Flúor , Quinase 3 da Glicogênio Sintase , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Camundongos , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Distribuição Tecidual
13.
Sci Rep ; 14(1): 16086, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992064

RESUMO

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-ß oligomers (SAßOs) accumulate early, prior to amyloid plaque formation. SAßOs induce memory impairment and disrupt cognitive function independent of amyloid-ß plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAßO (E3) nanobody generated from an alpaca immunized with SAßO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAßOs and amyloid-ß plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAßO and amyloid-ß plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAßOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAßO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Placa Amiloide , Anticorpos de Domínio Único , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Camundongos , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Camundongos Transgênicos , Camelídeos Americanos , Modelos Animais de Doenças
14.
Theranostics ; 14(10): 4147-4160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994025

RESUMO

Impact: The permeabilization of the BBB to deliver therapeutics with MR-guided FUS redefines therapeutic strategies as it improves patient outcomes. To ensure the best translation towards clinical treatment, the evaluation of hemodynamic modifications in the CNS is necessary to refine treatment parameters. Methods: MR-guided FUS was applied at 1.5 MHz with a 50 ms burst every 1 s to open the BBB. CBF, BVf and ADC parameters were monitored with MRI. Cavitation was monitored with a PCD during the FUS sequence and classified with the IUD index into three cavitation levels. We distinctly applied the FUS in the cortex or the striatum. After the BBB permeabilization, neuroinflammation markers were quantified longitudinally. Results: The BBB was successfully opened in all animals in this study and only one animal was classified as "hard" and excluded from the rest of the study. 30 min after FUS-induced BBB opening in the cortex, we measured a 54% drop in CBF and a 13% drop in BVf compared to the contralateral side. After permeabilization of the striatum, a 38% drop in CBF and a 15% drop in BVf were measured. CBF values rapidly returned to baseline, and 90 min after BBB opening, no significant differences were observed. We quantified the subsequent neuroinflammation, noting a significant increase in astrocytic recruitment at 2 days and microglial activation at 1 day after FUS. After 7 days, no more inflammation was visible in the brain. Conclusion: FUS-induced BBB opening transiently modifies hemodynamic parameters such as CBF and BVf, suggesting limited nutrients and oxygen supply to the CNS in the hour following the procedure.


Assuntos
Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Animais , Barreira Hematoencefálica/metabolismo , Imageamento por Ressonância Magnética/métodos , Inflamação/metabolismo , Encéfalo/metabolismo , Circulação Cerebrovascular , Masculino , Doenças Neuroinflamatórias/metabolismo , Ratos , Corpo Estriado/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000316

RESUMO

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Assuntos
Ataxina-3 , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Doença de Machado-Joseph , Camundongos Endogâmicos C57BL , Animais , Dependovirus/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Injeções Intravenosas , Barreira Hematoencefálica/metabolismo , Regiões Promotoras Genéticas
16.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999055

RESUMO

Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.


Assuntos
Barreira Hematoencefálica , Inflamação , Nanopartículas , Fator A de Crescimento do Endotélio Vascular , Humanos , Nanopartículas/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipídeos/química , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese , Lipossomos
17.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999971

RESUMO

Major burdens for patients suffering from stroke are cognitive co-morbidities and epileptogenesis. Neural network disinhibition and deficient inhibitive pulses for fast network activities may result from impaired presynaptic release of the inhibitory neurotransmitter GABA. To test this hypothesis, a cortical photothrombotic stroke was induced in Sprague Dawley rats, and inhibitory currents were recorded seven days later in the peri-infarct blood-brain barrier disrupted (BBBd) hippocampus via patch-clamp electrophysiology in CA1 pyramidal cells (PC). Miniature inhibitory postsynaptic current (mIPSC) frequency was reduced to about half, and mIPSCs decayed faster in the BBBd hippocampus. Furthermore, the paired-pulse ratio of evoked GABA release was increased at 100 Hz, and train stimulations with 100 Hz revealed that the readily releasable pool (RRP), usually assumed to correspond to the number of tightly docked presynaptic vesicles, is reduced by about half in the BBBd hippocampus. These pathophysiologic changes are likely to contribute significantly to disturbed fast oscillatory activity, like cognition-associated gamma oscillations or sharp wave ripples and epileptogenesis in the BBBd hippocampus.


Assuntos
Barreira Hematoencefálica , Hipocampo , Potenciais Pós-Sinápticos Inibidores , Ratos Sprague-Dawley , Ácido gama-Aminobutírico , Animais , Barreira Hematoencefálica/metabolismo , Ratos , Ácido gama-Aminobutírico/metabolismo , Hipocampo/metabolismo , Masculino , Células Piramidais/metabolismo , Vesículas Sinápticas/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Transmissão Sináptica
18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000069

RESUMO

Lung cancer is a leading cause of cancer-related morbidity and mortality worldwide. Metastases in the brain are a common hallmark of advanced stages of the disease, contributing to a dismal prognosis. Lung cancer can be broadly classified as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC represents the most predominant histology subtype of lung cancer, accounting for the majority of lung cancer cases. Recent advances in molecular genetics, coupled with innovations in small molecule drug discovery strategies, have facilitated both the molecular classification and precision targeting of NSCLC based on oncogenic driver mutations. Furthermore, these precision-based strategies have demonstrable efficacy across the blood-brain barrier, leading to positive outcomes in patients with brain metastases. This review provides an overview of the clinical features of lung cancer brain metastases, as well as the molecular mechanisms that drive NSCLC oncogenesis. We also explore how precision medicine-based strategies can be leveraged to improve NSCLC brain metastases.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Medicina de Precisão/métodos , Mutação , Barreira Hematoencefálica/metabolismo , Antineoplásicos/uso terapêutico
19.
J Am Heart Assoc ; 13(14): e034225, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979810

RESUMO

BACKGROUND: The purpose of this study was to investigate the relationship between blood-brain barrier (BBB) permeability and cognitive functioning in healthy older adults and individuals with neurodegenerative diseases. METHODS AND RESULTS: A total of 124 participants with Alzheimer disease, cerebrovascular disease, or a mix Alzheimer's and cerebrovascular diseases and 55 controlparticipants underwent magnetic resonance imaging and neuropsychological testing. BBB permeability was measured with dynamic contrast-enhanced magnetic resonance imaging and white matter injury was measured using a quantitative diffusion-tensor imaging marker of white matter injury. Structural equation modeling was used to examine the relationships between BBB permeability, vascular risk burden, white matter injury, and cognitive functioning. Vascular risk burden predicted BBB permeability (r=0.24, P<0.05) and white matter injury (r=0.38, P<0.001). BBB permeability predicted increased white matter injury (r=0.34, P<0.001) and increased white matter injury predicted lower cognitive functioning (r=-0.51, P<0.001). CONCLUSIONS: The study provides empirical support for a vascular contribution to white matter injury and cognitive impairment, directly or indirectly via BBB permeability. This highlights the importance of targeting modifiable vascular risk factors to help mitigate future cognitive decline.


Assuntos
Barreira Hematoencefálica , Cognição , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Masculino , Feminino , Idoso , Cognição/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Permeabilidade Capilar , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Envelhecimento/metabolismo , Envelhecimento/psicologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Envelhecimento Saudável
20.
Int J Nanomedicine ; 19: 6999-7014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011386

RESUMO

Introduction: Glioblastoma multiforme (GBM), a highly invasive and prognostically challenging brain cancer, poses a significant hurdle for current treatments due to the existence of the blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Methods: We present a biomimetic nanoplatform with angiopep-2-modified macrophage membrane, loaded with indocyanine green (ICG) templated self-assembly of SN38 (AM-NP), facilitating active tumor targeting and effective blood-brain barrier penetration through specific ligand-receptor interaction. Results: Upon accumulation at tumor sites, these nanoparticles achieved high drug concentrations. Subsequent combination of laser irradiation and release of chemotherapy agent SN38 induced a synergistic chemo-photothermal therapy. Compared to bare nanoparticles (NPs) lacking cell membrane encapsulation, AM-NPs significantly suppressed tumor growth, markedly enhanced survival rates, and exhibited excellent biocompatibility with minimal side effects. Conclusion: This NIR-activatable biomimetic camouflaging macrophage membrane-based nanoparticles enhanced drug delivery targeting ability through modifications of macrophage membranes and specific ligands. It simultaneously achieved synergistic chemo-photothermal therapy, enhancing treatment effectiveness. Compared to traditional treatment modalities, it provided a precise, efficient, and synergistic method that might have contributed to advancements in glioblastoma therapy.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Liberação Controlada de Fármacos , Glioblastoma , Verde de Indocianina , Nanopartículas , Terapia Fototérmica , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Animais , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Humanos , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Terapia Fototérmica/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Irinotecano/farmacocinética , Irinotecano/química , Irinotecano/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/farmacocinética , Raios Infravermelhos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Nus , Terapia Combinada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...