Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Keio J Med ; 68(2): 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31243185

RESUMO

Development of the skeleton is mediated through two distinct ossification mechanisms. Craniofacial bones are formed mainly through intramembranous ossification, a mechanism different from endochondral ossification required for development of the body skeleton. The skeletal structures are quite distinct between the two, thus they are likely to have their unique stem cell populations. The sutures serve as the growth center critical for healthy development of the craniofacial skeleton. Defects in suture morphogenesis cause its premature closure, resulting in development of craniosynostosis, a devastating disease affecting 1 in ~2,500 individuals. The suture mesenchyme has been postulated to act as the niche of skeletal stem cells essential for calvarial morphogenesis. However, very limited knowledge is available for suture biology and suture stem cells (SuSCs) have yet to be isolated. Here we report the first evidence for identification and isolation of a stem cell population residing in the suture midline. Genetic labeling of SuSCs shows their ability to self-renew and continually give rise to mature cell types over a 1-year monitoring period. They maintain their localization in the niches constantly produce skeletogenic descendants during calvarial development and homeostastic maintenance. Upon injury, SuSCs expand drastically surrounding the skeletogenic mesenchyme, migrate to the damaged site and contribute directly to skeletal repair in a cell autonomous fashion. The regeneration, pluripotency and frequency of SuSCs are also determined using limiting dilution transplantation. In vivo clonal expansion analysis demonstrates a single SuSC capable of generating bones. Furthermore, SuSC transplantation into injured calvaria facilitates the healing processes through direct engraftments. Our findings demonstrate SuSCs are bona fide skeletal stem cells ideally suited for cell-based craniofacial bone therapy as they possess abilities to engraft, differentiate.(Presented at the 1980th Meeting, April 16, 2019).


Assuntos
Desenvolvimento Ósseo/fisiologia , Suturas Cranianas/citologia , Ossos Faciais/citologia , Mesoderma/citologia , Células-Tronco/citologia , Animais , Regeneração Óssea/fisiologia , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/fisiologia , Craniossinostoses/patologia , Ossos Faciais/crescimento & desenvolvimento , Ossos Faciais/fisiologia , Humanos , Mesoderma/fisiologia , Morfogênese/fisiologia , Osteogênese/fisiologia , Base do Crânio/citologia , Base do Crânio/crescimento & desenvolvimento , Base do Crânio/fisiologia , Coluna Vertebral/citologia , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/fisiologia , Células-Tronco/fisiologia
2.
Med Eng Phys ; 68: 85-93, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005567

RESUMO

The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS) training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF) tissue is modeled as a sequence of three events: deformation, fracture, and cutting. The behavior in the deformation phase can be characterized using a non-linear, rate-dependent modified Kelvin-Voigt model. A non-linear model for tissue behavior prior to the fracture point is presented. The overall model shows a non-positive dependency of maximum force on tool indentation rate, which indicates faster tool insertion velocity decreases the maximum final fracture force. The tissue cutting phase has been modeled to characterize the force necessary to slice through the COF. The proposed model in this study can help develop VR-based ESSS base simulators in otolaryngology and ophthalmology surgeries. Such simulators are useful in preoperative planning, accurate surgical simulation, intelligent robotic assistance, and treatment applications.


Assuntos
Endoscopia/efeitos adversos , Fenômenos Mecânicos , Modelos Biológicos , Nariz/cirurgia , Base do Crânio/cirurgia , Animais , Fenômenos Biomecânicos , Nariz/citologia , Ovinos , Base do Crânio/citologia
3.
Orthod Craniofac Res ; 20(3): 177-182, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28727318

RESUMO

OBJECTIVES: This study was designed to clarify biological changes of cranial base synchondrosis chondrocytes (CBSCs) upon cyclic tensile strain (CTS) loading which simulated orthopaedic mechanical protraction on cranial base synchondroses (CBS). MATERIAL AND METHODS: A two-step digestion method was used to isolate CBSCs obtained from 1-week-old Sprague Dawley rats. Immunohistochemical staining of type II collagen and Sox9 was conducted to identify chondrocytes. A CTS of 1 Hz and 10% elongation was applied to the second passage of CBSCs by FX-5000™ Tension System for 24 hours. The control group kept static at the same time. The expression levels of extracellular matrix (Acan, Col1a1, Col2a1 and Col10a1) and key regulatory factors (Sox9, Ihh and PTHrP) were detected by quantitative real-time RT-PCR. RESULTS: Positive staining of type II collagen and Sox9 was detected in the isolated CBSCs. The relative expression level of Acan, Col2a1, Col10a1, Sox9 and Ihh in the CTS-loading group was 1.85-fold, 2.19-fold, 1.53-fold, 6.62-fold, and 1.39-fold, respectively, as much as that in the control group, which had statistical significance (P<.05). There was no statistical difference (P>.05) in the expression of Col1a1 and PTHrP. CONCLUSIONS: A CTS of 1 Hz and 10% elongation for 24 hours had positive effects on chondrocyte proliferation, phenotype maintenance and cartilage matrix synthesis.


Assuntos
Condrócitos/citologia , Base do Crânio/citologia , Estresse Mecânico , Agrecanas/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Fenótipo , Ratos Sprague-Dawley , Fatores de Transcrição SOX9/metabolismo , Resistência à Tração
4.
Int J Biol Sci ; 13(1): 32-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28123344

RESUMO

Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.


Assuntos
Acrocefalossindactilia/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Base do Crânio/anatomia & histologia , Base do Crânio/metabolismo , Crânio/anatomia & histologia , Crânio/metabolismo , Acrocefalossindactilia/genética , Animais , Encéfalo/citologia , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Mutantes , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/citologia , Base do Crânio/citologia , Microtomografia por Raio-X
5.
Eur J Orthod ; 37(3): 308-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25312980

RESUMO

BACKGROUND/OBJECTIVE: Chondrogenesis is an integral part of endochondral bone formation, by which the midline cranial base is developed. Reactive oxygen species (ROS) are required in chondrogenic differentiation and antioxidant enzymes regulate their levels. The aim of this study was to localize the antioxidant enzyme glutathione peroxidase 1 (Gpx1) at the spheno-occipital synchondrosis, as well as its effect on ROS challenge and its expression pattern in the course of differentiation. MATERIALS AND METHODS: Gpx1 was semiquantified in immunohistochemically stained sections of spheno-occipital synchondroses of rats. The effect of Gpx1 on ROS-induced apoptosis was investigated by manipulating the expression of Gpx1 in ATDC5 cells. The temporal pattern of Gpx1 expression was determined during chondrocyte differentiation for 21 days in vitro. RESULTS: Proliferating chondrocytes exhibited the greatest Gpx1 immunoreactivity and hypertrophic ones the lowest (P = 0.02). Cells transfected with Gpx1-siRNA had the highest apoptotic rate, while cells overexpressing Gpx1 the lowest one (P < 0.001). Gpx1 was significantly increased on days 10 (P = 0.02) and 14 (P = 0.01). CONCLUSIONS: Hypertrophic chondrocytes have the lowest Gpx1 activity in the spheno-occipital synchondrosis. Gpx1 is implicated in the ROS-induced apoptosis in chondrocytes. Its expression was not constitutive during chondrogenic differentiation.


Assuntos
Apoptose/fisiologia , Suturas Cranianas/enzimologia , Glutationa Peroxidase/análise , Osso Occipital/enzimologia , Espécies Reativas de Oxigênio/análise , Osso Esfenoide/enzimologia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Condrócitos/enzimologia , Condrócitos/fisiologia , Condrogênese/fisiologia , Suturas Cranianas/citologia , Técnicas de Silenciamento de Genes , Glutationa Peroxidase/genética , Glutationa Peroxidase/fisiologia , Hipertrofia , Osso Occipital/citologia , Osteogênese/fisiologia , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/farmacologia , Base do Crânio/citologia , Osso Esfenoide/citologia , Fatores de Tempo , Glutationa Peroxidase GPX1
6.
Ital J Anat Embryol ; 116(1): 20-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21898970

RESUMO

The location of sympathetic, somatic and sensory neurons projecting to the cranial tibial muscle of the pig hindlimb was studied with the neuronal non-transynaptic tracer Fast Blue. Additionally, the number and the size of these neurons were determinated. The Fast blue, randomly applied to the cranial tibial muscle belly of 3 pigs, labelled sympathetic neurons in the ipsilateral L5-S3 and contralateral S1 sympathetic trunk ganglia and in the prevertebral caudal mesenteric ganglia of both sides. The somatic motoneurons were identified in the ipsilateral ventral horn of the S1 segment of spinal cord, while the sensory neurons were located in the ipsilateral L7-S1 spinal ganglia. The diameter of the multipolar sympathetic neurons oscillated between 26 and 46 microm in the sympathetic trunk ganglia and between 18 and 42 microm in the caudal mesenteric ganglia. The size of the multipolar spinal motoneurons oscillated between 33 and 102 microm. The size of the pseudounipolar sensory neurons oscillated between 23 and 67 microm. In all ganglia, the labelled neurons were localized at random and did not show a somatotopic distribution. Our results document a conspicuous autonomic innervation projecting to the "classic" skeletal cranial tibial muscle. Probably this innervation is destined to the muscle vessels.


Assuntos
Neurônios Motores/citologia , Músculo Esquelético/citologia , Músculo Esquelético/inervação , Células Receptoras Sensoriais/citologia , Base do Crânio/citologia , Base do Crânio/inervação , Fibras Simpáticas Pós-Ganglionares/citologia , Tíbia/inervação , Animais , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Gânglios Simpáticos/citologia , Gânglios Simpáticos/fisiologia , Membro Posterior , Neurônios Motores/fisiologia , Músculo Esquelético/irrigação sanguínea , Células Receptoras Sensoriais/fisiologia , Base do Crânio/irrigação sanguínea , Medula Espinal/citologia , Medula Espinal/fisiologia , Sus scrofa , Fibras Simpáticas Pós-Ganglionares/fisiologia , Tíbia/irrigação sanguínea
7.
J Exp Zool B Mol Dev Evol ; 316(8): 574-83, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21826789

RESUMO

The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Condrócitos/citologia , Condrogênese/fisiologia , Sialoproteína de Ligação à Integrina/metabolismo , Base do Crânio/embriologia , Tretinoína/metabolismo , Monoterpenos Acíclicos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Sialoproteína de Ligação à Integrina/efeitos dos fármacos , Antígeno Ki-67/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Camundongos , Monoterpenos/farmacologia , Técnicas de Cultura de Órgãos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Base do Crânio/citologia , Base do Crânio/efeitos dos fármacos , Base do Crânio/metabolismo , Tretinoína/farmacologia , Receptor gama de Ácido Retinoico
8.
J Dent Res ; 88(6): 545-50, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19587160

RESUMO

Primary cilia regulate several developmental processes and mediate hedgehog signaling. To study their roles in cranial base development, we created conditional mouse mutants deficient in Polaris, a critical primary cilium component, in cartilage. Mutant post-natal cranial bases were deformed, and their synchondrosis growth plates were disorganized. Expression of Indian hedgehog, Patched-1, collagen X, and MMP-13 was reduced and accompanied by decreases in endochondral bone. Interestingly, there was excessive intramembranous ossification along the perichondrium, accompanied by excessive Patched-1 expression, suggesting that Ihh distribution was wider and responsible for such excessive response. Indeed, expression of heparan sulfate proteoglycans (HS-PGs), normally involved in restricting hedgehog distribution, was barely detectable in mutant synchondroses. Analyses of the data provides further evidence for the essential roles of primary cilia and hedgehog signaling in cranial base development and chondrocyte maturation, and point to a close interdependence between cilia and HS-PGs to delimit targets of hedgehog action in synchondroses.


Assuntos
Condrócitos/citologia , Lâmina de Crescimento/metabolismo , Osteogênese/genética , Base do Crânio/crescimento & desenvolvimento , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Condrócitos/química , Condrócitos/fisiologia , Cílios/química , Colágeno Tipo X/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/fisiologia , Proteoglicanas de Heparan Sulfato/biossíntese , Técnicas Imunoenzimáticas , Metaloproteinase 13 da Matriz/biossíntese , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/biossíntese , Transdução de Sinais , Base do Crânio/citologia , Proteínas Supressoras de Tumor/deficiência , Microtomografia por Raio-X
9.
J Cell Physiol ; 219(3): 688-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19229881

RESUMO

Parathyroid hormone-related peptide (PTHrP) is known to be an important regulator of chondrocyte differentiation in embryonic growth plates, but little is known of its role in postnatal growth plates. The present study explores the role of PTHrP in regulating postnatal chondrocyte differentiation using a novel in vitro organ culture model based on the ethmoidal growth plate of the cranial base taken from the postnatal day 10 mouse. In vitro the ethmoidal growth plate continued to mineralize and the chondrocytes progressed to hypertrophy, as observed in vivo, but the proliferative zone was not maintained. Treatment with PTHrP inhibited mineralization and reduced alkaline phosphatase (ALP) activity in the hypertrophic zone in the ethmoidal growth plates grown ex vivo, and also increased the proliferation of non-hypertrophic chondrocytes. In addition, exogenous PTHrP reduced the expression of genes associated with terminal differentiation: type X collagen, Runx2, and ALP, as well as the PTH/PTHrP receptor (PPR). Activation of the protein kinase A pathway using 8-Br-cAMP mimicked some of these pro-proliferative/anti-differentiative effects of PTHrP. PTHrP and PPR were found to be expressed within the ethmoidal growth plate using semi-quantitative PCR, and in other cranial growth plates such as the spheno-occipital and pre-sphenoidal synchondroses. These results provide the first functional evidence that PTHrP regulates proliferation and differentiation within the postnatal, cranial growth plate. J. Cell. Physiol. 219: 688-697, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Lâmina de Crescimento/citologia , Lâmina de Crescimento/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Base do Crânio/citologia , Base do Crânio/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Osso Etmoide/citologia , Osso Etmoide/efeitos dos fármacos , Osso Etmoide/crescimento & desenvolvimento , Osso Etmoide/metabolismo , Expressão Gênica/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Base do Crânio/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
10.
Dev Biol ; 322(1): 121-32, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18680740

RESUMO

The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the "New Head".


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cartilagem/embriologia , Morfogênese/genética , Base do Crânio/embriologia , Proteína Wnt1/genética , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Cartilagem/citologia , Linhagem da Célula , Embrião de Mamíferos , Galactosídeos , Hibridização In Situ , Indóis , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/embriologia , Regiões Promotoras Genéticas/genética , Base do Crânio/citologia , Coloração e Rotulagem , Fatores de Tempo
11.
Eur Surg Res ; 41(2): 208-13, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18504371

RESUMO

OBJECTIVE: The direct endonasal or transoral transclival approaches to the skull base permit effective minimally invasive surgery along the clivus region. Developing consistently effective techniques to prevent cerebrospinal fluid (CSF) leaks and their consequences (infections and healing processes with long and complicated recoveries) remains a major challenge. In this study, we tested over a long period a method of bone reconstruction newly developed by us, which makes use of a specially designed elastic silicone plug that can be employed for bone replacement after minimally invasive skull base surgery without risk of postoperative CSF leaks. After acute testing of plug efficiency in a pig model, which showed a 100% closure of the bone defect without CSF leak, we now tested the long-term accuracy of the plugs. METHODS: In 3 primates, we used an endoscope-controlled transoral transclival approach and after opening the dura we simulated a CSF leakage. We inserted the plug into the bone defect and closed the mucosa of the oral cavity with stitches. The follow-up included blood, weight, and wound control 1, 4 and 8 weeks postoperatively. Social behavior, such as reintegration and postoperative eating abnormalities, was also studied. The aims of this study were: (1) testing the biocompatibility of the material; (2) development of infection against the foreign body; (3) effects of the plug on the surrounding bone, and (4) development of CSF leakages during the postoperative phase. RESULTS: Clinically no infection was seen. Wound healing, immediate and long-term postoperative social behavior of the animals, feeding and body weight were normal. No CSF leakages developed. The histological examination of the clivus bone showed no abnormalities. The implant was covered by fibrous layer; there was no bone atrophy but osteoid formation. CONCLUSION: This novel medical device allows easy, fast and uncomplicated, leak-proof closure of bone defects after minimally invasive craniotomies as seen in transsphenoidal or transoral skull base approaches.


Assuntos
Endoscopia/métodos , Procedimentos de Cirurgia Plástica/métodos , Próteses e Implantes , Silicones , Base do Crânio/cirurgia , Animais , Antibacterianos/farmacologia , Líquido Cefalorraquidiano , Reação a Corpo Estranho , Masculino , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Modelos Animais , Papio hamadryas , Complicações Pós-Operatórias , Base do Crânio/citologia
12.
Dev Biol ; 299(1): 272-82, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16935278

RESUMO

The synchondroses consist of mirror-image growth plates and are critical for cranial base elongation, but relatively little is known about their formation and regulation. Here we show that synchondrosis development is abnormal in Indian hedgehog-null mice. The Ihh(-/-) cranial bases displayed reduced growth and chondrocyte proliferation, but chondrocyte hypertrophy was widespread. Rather than forming a typical narrow zone, Ihh(-/-) hypertrophic chondrocytes occupied an elongated central portion of each growth plate and were flanked by immature collagen II-expressing chondrocytes facing perichondrial tissues. Endochondral ossification was delayed in much of the Ihh(-/-) cranial bases but, surprisingly, was unaffected most posteriorly. Searching for an explanation, we found that notochord remnants near incipient spheno-occipital synchondroses at E13.5 expressed Sonic hedgehog and local chondrocytes expressed Patched, suggesting that Shh had sustained chondrocyte maturation and occipital ossification. Equally unexpected, Ihh(-/-) growth plates stained poorly with Alcian blue and contained low aggrecan transcript levels. A comparable difference was seen in cultured wild-type versus Ihh(-/-) synchondrosis chondrocytes. Treatment with exogenous Ihh did not fully restore normal proteoglycan levels in mutant cultures, but a combination of Ihh and BMP-2 did. In summary, Ihh is required for multiple processes during synchondrosis and cranial base development, including growth plate zone organization, chondrocyte orientation, and proteoglycan production. The cranial base appears to be a skeletal structure in which growth and ossification patterns along its antero-posterior axis are orchestrated by both Ihh and Shh.


Assuntos
Condrogênese/fisiologia , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Base do Crânio/embriologia , Agrecanas/genética , Animais , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Lâmina de Crescimento/citologia , Hipertrofia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos , Lobo Occipital/citologia , Osteogênese/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Base do Crânio/citologia , Base do Crânio/patologia
13.
FEBS Lett ; 580(17): 4214-7, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16828749

RESUMO

MicroRNAs (miRNA) are short RNA molecules regulating the expression of specific mRNAs. We investigated the expression pattern and potential targets of mouse miR-140 and found that miR-140 is specifically expressed in cartilage tissues of mouse embryos during both long and flat bone development. MiR-140 expression was detected in the limbs of E11.5 embryos in the primorida of future bones both in the fore and hindlimb and across autopod, zeugopod and stylopod. All digits of E14.5 fore- and hindlimbs showed accumulation of miR-140, except the first digit of the hindlimb. MiR-140 expression was also detected in the cartilagenous base of E17.5 skulls and in the sternum, the proximal rib heads and the developing vertebral column of E15.5 embryos. A potential target of miR-140, histone deacetylase 4, was validated experimentally and the possible role of miR-140 in long bone development is discussed.


Assuntos
Cartilagem/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Histona Desacetilases/biossíntese , MicroRNAs/biossíntese , Osteogênese/fisiologia , Animais , Cartilagem/citologia , Membro Posterior/citologia , Membro Posterior/embriologia , Hibridização In Situ , Camundongos , Base do Crânio/citologia , Base do Crânio/embriologia
14.
J Mol Histol ; 36(6-7): 419-26, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16521043

RESUMO

The Dickkopf (Dkk) family and Mmp9 are important for apoptosis and a number of other developmental processes. However, little is known about their roles in the development of cranial base, which is an important structure for coordinated development and growth of the craniofacial skeletons. In order to establish whether and in what way these genes are involved in cranial base development, we examined their expression patterns and cell apoptosis. Dkk1 was first seen in the perichondral mesenchyme in restricted domains from E14, and later in the migrating mesenchymal cells within the cartilage. Thereafter, it was widespread throughout the bones of the cranial base. The expression was downregulated in postnatal stages. Dkk2 was localized in the perichondral mesenchyme outlining the anterior cranial base in embryogenesis. Dkk3 was mainly detected in the occipital-vertebral joint at E13 and E14. Mmp9 transcripts were clustered in the inner layer of perichondral mesenchyme, juxtaposed with the terminally differentiated hypertrophic chondrocytes from E14. Later Mmp9-expressing cells were found at the sites of chondrocyte apoptosis. This was particularly clear at the distal ends of the synchondroses. These data indicate that Mmp9 regulates skeletogenesis in cranial base in a manner that is largely similar to that of the appendicular skeletons. Expression of Dkks suggests other roles that remain to be defined.


Assuntos
Apoptose , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Hibridização In Situ , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Base do Crânio/citologia , Base do Crânio/embriologia , Base do Crânio/enzimologia
15.
J Neurosurg ; 99(2): 362-5, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12924711

RESUMO

OBJECT: Few anatomical studies have been focused on the morphological features and microscopic anatomy of the transition from the intracranial space to the medial anterior cranial base. The authors of the current study performed histological analyses to define the structure of the transition from neural foramina to the cranial base (neural-dural transition) at the cribriform plate, particularly as related to cerebrospinal fluid (CSF) fistula formation and surgical intervention in the region. METHODS: The medial anterior cranial base was resected in six cadaveric specimens. Histological methods were used to study the anatomy of the region on the microscopic level. Results of these examinations revealed a multilayered neural-dural transition at the cribriform plate, which consisted of an arachnoid membrane and a potential subarachnoid space as well as dura mater, periosteum, ethmoid bone, and associated layers of submucosa and mucosa of the paranasal air spaces. A subarachnoid space was identified around the olfactory nerves as they exited the neural foramina of the cribriform plates. The dura mater eventually thinned out and became continuous with the periosteum in the ethmoid bone. The dura, arachnoid membrane, and associated potential subarachnoid space were obliterated at a place 1 to 2 mm into the olfactory foramen. The authors present a case of recurrent CSF rhinorrhea successfully treated using a technique of multilayered reconstruction with pericranium, fat, and bone. CONCLUSIONS: The findings provide an anatomical basis for CSF fistula formation in the region of the cribriform plate and help to explain the unusual presentations in patients who have CSF rhinorrhea and meningitis. These results may facilitate the treatment of CSF fistulas, repair of defects in the medial anterior cranial base, and approaches to tumors and other pathological entities in the region.


Assuntos
Encéfalo/citologia , Rinorreia de Líquido Cefalorraquidiano/cirurgia , Fossa Craniana Anterior/anormalidades , Fossa Craniana Anterior/diagnóstico por imagem , Dura-Máter/anatomia & histologia , Dura-Máter/citologia , Base do Crânio/anatomia & histologia , Base do Crânio/citologia , Tecido Adiposo/transplante , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/cirurgia , Rinorreia de Líquido Cefalorraquidiano/diagnóstico por imagem , Rinorreia de Líquido Cefalorraquidiano/etiologia , Fossa Craniana Anterior/cirurgia , Craniotomia , Feminino , Humanos , Pessoa de Meia-Idade , Transtornos do Olfato/etiologia , Tomografia Computadorizada por Raios X
16.
Eur. j. anat ; 7(1): 23-33, mayo 2003. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-137852

RESUMO

A recent human population from Italy was analysed for the prevalence and expression of endocranial characters, as well as for the presence of some ectocranial epigenetic traits. The purpose was to provide a supplementary database for the characterisation of some features used to compare the variability of extant and extinct human groups. Many differences between males and females are the result of allometric trajectories, with males shifted to a larger size. In contrast, other features may be unrelated to size and thus interpreted as real sexual characters. The cranial base angle is slightly but significantly related to size, particularly to the vertical skull development. The digital impressions are more expressed in males but there is no evidence of a correlation with size. Arachnoid granulations show no relationship with sex, age or size. The middle meningeal vessels are extremely variable but with a general dominance of the anterior branch providing the parietal supply, and with the left system slightly more developed than the right. The middle meningeal pattern is not related to the venous sinuses pattern. Some further aspects of the expression of these features are discussed, and data for the prevalence of epigenetic traits are reported (AU)


No disponible


Assuntos
Feminino , Humanos , Masculino , Forma do Núcleo Celular/genética , Base do Crânio/anormalidades , Base do Crânio/anatomia & histologia , Prevalência , Cavidades Cranianas/citologia , Cavidades Cranianas/inervação , Itália/etnologia , Forma do Núcleo Celular/fisiologia , Base do Crânio/citologia , Base do Crânio/patologia , Cavidades Cranianas/lesões , Cavidades Cranianas/metabolismo
17.
J Dent Res ; 81(10): 701-5, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351669

RESUMO

Whereas the growth of the cranial base cartilage is thought to be regulated solely by genes, epiphyseal growth plates are known to respond to mechanical stresses. This disparity has led to our hypothesis that chondrocyte proliferation is accelerated by mechanical stimuli above natural growth. Two-Newton tensile forces with static and cyclic waveforms were delivered in vivo to the premaxillae of actively growing rabbits for 20 min/day over 12 consecutive days. The average number of BrdU-labeled chondrocytes in the proliferating zone treated with cyclic forces was significantly higher than both static forces of matching peak magnitude and sham controls representing natural chondral growth. Cyclic forces also evoked greater area of the proliferating zone than both static forces and sham controls. Thus, chondrocyte proliferation is enhanced by mechanical stresses in vivo, especially those with oscillatory waveform. Analysis of these data suggests that genetically coded chondral growth is up-regulated by mechanical signals.


Assuntos
Cartilagem/citologia , Condrócitos/fisiologia , Base do Crânio/citologia , Análise de Variância , Animais , Antimetabólitos , Bromodesoxiuridina , Cartilagem/crescimento & desenvolvimento , Cartilagem/fisiologia , Contagem de Células , Divisão Celular , Condrócitos/citologia , Condrogênese/fisiologia , Lâmina de Crescimento/citologia , Lâmina de Crescimento/fisiologia , Masculino , Maxila/citologia , Maxila/fisiologia , Modelos Animais , Osso Occipital/citologia , Coelhos , Distribuição Aleatória , Base do Crânio/crescimento & desenvolvimento , Osso Esfenoide/citologia , Estatística como Assunto , Estresse Mecânico , Regulação para Cima
18.
Arch Oral Biol ; 47(2): 155-63, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11825580

RESUMO

The retrognathic Brachyrrhine (Br) heterozygote mouse mutant has a very localized morphological deficiency in the sphenoethmoidal region of the anterior cranial base. The purpose of this study was to test the hypothesis that a primary growth defect occurs in that region of Br mice. Primary cell cultures were derived from presumptive nasal septal and sphenoethmoidal regions of Br and wild-type littermates. Cultures were stimulated with 1.0 ng/ml epidermal growth factor (EGF), and [3H]thymidine and [35S] incorporation was measured. Growth of the nasal septal chondrocytes did not differ significantly between groups. In the cultures derived from the sphenoethmoidal region [35S] incorporation was greater, but not significantly so, in the normal group. However, EGF did significantly stimulate proliferation of the sphenoethmoidal chondrocytes in wild-type cultures above that measured in Br cultures. Therefore, the Br genetic aberration is associated with a primary growth defect in the sphenoethmoidal region of the cranial base. These results suggest that growth of the anterior cranial base occurs differentially and that the defect in Br mice results in reduced sphenoidal but not nasal septal growth.


Assuntos
Condrócitos/efeitos dos fármacos , Condrogênese/genética , Fator de Crescimento Epidérmico/farmacologia , Base do Crânio/anormalidades , Animais , Diferenciação Celular , Divisão Celular , Células Cultivadas , Camundongos , Camundongos Mutantes , Septo Nasal/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Base do Crânio/citologia , Base do Crânio/crescimento & desenvolvimento , Osso Esfenoide/anormalidades , Osso Esfenoide/citologia , Osso Esfenoide/crescimento & desenvolvimento
19.
J Craniofac Genet Dev Biol ; 20(2): 53-63, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11100735

RESUMO

Exquisite control of chondrocyte function in the zone of hypertrophy results in expansive growth of cartilaginous growth plates, and is a prerequisite for normal skeletal lengthening. We hypothesize that hyaluronan-mediated hydrostatic pressure causes lacunae expansion in the zone of hypertrophy; an important mechanism in cartilaginous growth plate and associated skeletal expansion. The role of hyaluronan and CD44 in this mechanism was studied using organ culture of the bipolar cranial base synchondroses. Hyaluronan was present in the hypertrophic zones, pericellular to the hypertrophic chondrocytes, while no hyaluronan was detected in the resting, proliferating and maturing zones. This localization of hyaluronan was associated with increased lacunae size, suggesting that chondrocytes deposit and retain pericellular hyaluronan as they mature. In comparison, Toluidine Blue staining was associated with the territorial matrix. Hyaluronidase, the hyaluronan-degrading enzyme, and CD44, the receptor for hyaluronan which also participates in the uptake and degradation of hyaluronan, were co-localized within the zone of ossification. This pattern of expression suggests that cells in the early zone of ossification internalize and degrade hyaluronan through a CD44-mediated mechanism. Treatment of the cultured segments with either Streptomyces hyaluronidase or hyaluronan hexasaccharides inhibited lacunae expansion. These observations demonstrate that hyaluronan-mediated mechanisms play an important role in controlling normal skeletal lengthening.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Lâmina de Crescimento/crescimento & desenvolvimento , Ácido Hialurônico/fisiologia , Base do Crânio/crescimento & desenvolvimento , Animais , Cartilagem Articular/citologia , Lâmina de Crescimento/citologia , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/fisiologia , Ácido Hialurônico/análise , Osso Occipital/citologia , Osso Occipital/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Base do Crânio/citologia , Osso Esfenoide/citologia , Osso Esfenoide/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...