Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16083, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373526

RESUMO

The widespread evolution of glyphosate-resistant (GR) Bassia scoparia in the U.S. Great Plains poses a serious threat to the long-term sustainability of GR sugar beet. Glyphosate resistance in B. scoparia is due to an increase in the EPSPS (5-enolpyruvyl-shikimate-3-phosphate) gene copy number. The variation in EPSPS gene copies among individuals from within a single GR B. scoparia population indicated a differential response to glyphosate selection. With the continued use of glyphosate in GR sugar beet, the effect of increasing glyphosate rates (applied as single or sequential applications) on the fitness of GR B. scoparia individuals with variable EPSPS gene copies was tested under field conditions. The variation in EPSPS gene copy number and total glyphosate rate (single or sequential applications) did not influence any of the reproductive traits of GR B. scoparia, except seed production. Sequential applications of glyphosate with a total rate of 2214 g ae ha-1 or higher prevented seed production in B. scoparia plants with 2-4 (low levels of resistance) and 5-6 (moderate levels of resistance) EPSPS gene copies. Timely sequential applications of glyphosate (full recommended rates) can potentially slow down the evolution of GR B. scoparia with low to moderate levels of resistance (2-6 EPSPS gene copies), but any survivors (highly-resistant individuals with ≥ 8 EPSPS gene copies) need to be mechanically removed before flowering from GR sugar beet fields. This research warrants the need to adopt ecologically based, multi-tactic strategies to reduce exposure of B. scoparia to glyphosate in GR sugar beet.


Assuntos
Bassia scoparia/genética , Dosagem de Genes/genética , Glicina/análogos & derivados , Ácido Chiquímico/análogos & derivados , Flores/genética , Glicina/genética , Resistência a Herbicidas/genética , Ácido Chiquímico/metabolismo , Glifosato
2.
Interdiscip Sci ; 13(1): 128-139, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33595803

RESUMO

Kochia scoparia has high medicinal and economic value. However, with similar morphological features, adulterants and some closely related species of K. scoparia are increasingly sold in the medicinal markets, leading to potential safety risks. In this study, 128 internal transcribed spacer 2 (ITS2) sequences were collected to distinguish K. scoparia from its closely related species and adulterants. Then, sequence alignment, sequence characteristics analysis, and genetic distance calculations were performed using MEGA 6.06 software, and the phylogenetic trees were reconstructed using both MEGA 6.06 and IQ-Tree software. Finally, the secondary structure of ITS2 was modeled using the prediction tool in the ITS2 database. The results showed that ITS2 sequences of K. scoparia ranged in length from 226 to 227 bp, with a mean GC content of 55.3%. The maximum intraspecific distance was zero, while the minimum interspecific distance from closely related species and adulterants was 0.009 and 0.242, respectively. Kochia scoparia formed an independent clade in the phylogenetic trees, and its secondary structure exhibited enough variation to be separated from that of other species. In summary, ITS2 can be used as a mini-barcode for distinguishing K. scoparia from closely related species and adulterants. Its phylogenetic trees could illustrate the evolutionary process of K. scoparia in the Camphorosmeae. The phylogenetic results using ITS2 barcode further supported the internationally recognized revised classifications of Kochia and Bassia genera as a combined Bassia genus, together with the establishment of new genera Grubovia and Sedobassia, which we suggest is accepted by the Flora of China. Graphical abstract .


Assuntos
Bassia scoparia , Filogenia , Plantas Medicinais , Bassia scoparia/genética , China , Código de Barras de DNA Taxonômico , DNA de Plantas , DNA Espaçador Ribossômico
3.
Genome Biol Evol ; 11(10): 2927-2940, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518388

RESUMO

Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Duplicação Gênica , Glicina/análogos & derivados , Herbicidas , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/enzimologia , Elementos de DNA Transponíveis , Resistência a Medicamentos/genética , Evolução Molecular , Expressão Gênica , Glifosato
4.
PLoS One ; 14(5): e0216116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063467

RESUMO

Mutations that confer herbicide resistance are a primary concern for herbicide-based chemical control of invasive plants and are often under-characterized structurally and functionally. As the outcome of selection pressure, resistance mutations usually result from repeated long-term applications of herbicides with the same mode of action and are discovered through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target protein, the impact of genetic mutations on ligand binding could be evaluated and resistance mutations could be identified using a biophysics-based computational approach. Briefly, the 3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were constructed by homology modeling, docking and molecular dynamics simulation. The resistance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl, was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated) using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechanical (QM/MM) methods in combination with three structure sampling strategies. By comparing predicted resistance with experimentally determined resistance in the 29 biotypes of K. scoparia field populations, we identified the best method (i.e., MM-PBSA with single structure) out of all tested methods for the herbicide-KsAHAS system, which exhibited the highest accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case basis.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Mutação/genética , Simulação por Computador , Herbicidas/farmacologia
5.
J Hered ; 109(2): 117-125, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29040588

RESUMO

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Evolução Molecular , Duplicação Gênica , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/antagonistas & inibidores , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Amplificação de Genes , Genes de Plantas , Glicina/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/genética , Glifosato
6.
Pest Manag Sci ; 74(10): 2306-2315, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29083527

RESUMO

BACKGROUND: Resistance to the synthetic auxin herbicide dicamba is increasingly problematic in Kochia scoparia. The resistance mechanism in an inbred dicamba-resistant K. scoparia line (9425R) was investigated using physiological and transcriptomics (RNA-Seq) approaches. RESULTS: No differences were found in dicamba absorption or metabolism between 9425R and a dicamba-susceptible line, but 9425R was found to have significantly reduced dicamba translocation. Known auxin-responsive genes ACC synthase (ACS) and indole-3-acetic acid amino synthetase (GH3) were transcriptionally induced following dicamba treatment in dicamba-susceptible K. scoparia but not in 9425R. Chalcone synthase (CHS), the gene regulating synthesis of the flavonols quertecin and kaemperfol, was found to have twofold higher transcription in 9425R both without and 12 h after dicamba treatment. Increased CHS transcription co-segregated with dicamba resistance in a forward genetics screen using an F2 population. CONCLUSION: Prior work has shown that the flavonols quertecin and kaemperfol compete with auxin for intercellular movement and vascular loading via ATP-binding cassette subfamily B (ABCB) membrane transporters. The results of this study support a model in which constitutively increased CHS expression in the meristem produces more flavonols that would compete with dicamba for intercellular transport by ABCB transporters, resulting in reduced dicamba translocation. © 2017 Society of Chemical Industry.


Assuntos
Aciltransferases/genética , Bassia scoparia/efeitos dos fármacos , Dicamba/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , Aciltransferases/metabolismo , Bassia scoparia/enzimologia , Bassia scoparia/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Plantas Daninhas/genética
7.
Plant Sci ; 261: 69-79, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554695

RESUMO

Glyphosate is considered the world's most important herbicide, but widespread and continual use has resulted in the evolution of resistance. Kochia scoparia (kochia) has evolved resistance via tandem gene amplification of glyphosate's target, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and resistant populations have been reported from the Canadian Prairies and the Northern Great Plains. Here, we evaluated the fitness costs of EPSPS amplification in kochia by comparing susceptible and resistant full siblings from segregating F2 populations generated from within six populations. Kochia was expected to be highly diverse because of strong gene flow; however, six of the seven field-collected parents with higher EPSPS copy number were homozygous. Under competitive greenhouse conditions, the EPSPS type of the line's maternal parent showed persistent effects: delayed emergence, delayed flowering, and reductions in viable seed count and weight overall. High EPSPS copy number individuals had reduced seed count and weight, reduced competitive ability, and reduced final height in mixed stands, but better germination of the F3. However, all characteristics were highly variable and fitness costs were not constant across genetic backgrounds. In the absence of selection from glyphosate, kochia with increased EPSPS copy number will be at a competitive disadvantage in some genetic backgrounds.


Assuntos
Bassia scoparia/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/enzimologia , Bassia scoparia/genética , Bassia scoparia/fisiologia , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , Glicina/farmacologia , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Melhoramento Vegetal , Glifosato
8.
PLoS One ; 11(12): e0168295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992501

RESUMO

Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia , Dosagem de Genes , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Amplificação de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicina/farmacologia , Herbicidas/farmacologia , Glifosato
9.
PLoS One ; 10(11): e0142675, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580558

RESUMO

Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Resistência a Herbicidas/genética , Triticum/parasitologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/biossíntese , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/crescimento & desenvolvimento , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Reprodução/genética , Triticum/crescimento & desenvolvimento , Glifosato
10.
Pest Manag Sci ; 71(9): 1207-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25950428

RESUMO

BACKGROUND: Evolution of multiple herbicide resistance in weeds is a serious threat to weed management in crop production. Kochia is an economically important broadleaf weed in the U.S. Great Plains. This study aimed to confirm resistance to four sites of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population from a crop field near Garden City (GC), Kansas, and further determine the underlying mechanisms of resistance. RESULTS: One-fourth of the GC plants survived the labeled rate or higher of atrazine [photosystem II (PSII) inhibitor], and the surviving plants had the Ser-264 to Gly mutation in the psbA gene, the target site of atrazine. Results showed that 90% of GC plants survived the labeled rate of dicamba, a synthetic auxin. At least 87% of the plants survived up to 72 g a.i. ha(-1) of chlorsulfuron [acetolactate synthase (ALS) inhibitor], and analysis of the ALS gene revealed the presence of Pro-197 to Thr and/or Trp-574 to Lue mutation(s). Most GC plants also survived the labeled rate of glyphosate [5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor), and the resistant plants had 5-9 EPSPS gene copies (relative to the ALS gene). CONCLUSION: We confirm the first case of evolution of resistance to four herbicide sites of action (PSII, ALS and EPSPS inhibitors and synthetic auxins) in a single kochia population, and target-site-based mechanisms confer resistance to atrazine, glyphosate and chlorsulfuron.


Assuntos
Bassia scoparia/fisiologia , Resistência a Herbicidas , Herbicidas , Atrazina , Bassia scoparia/genética , DNA de Plantas/genética , Dicamba , Glicina/análogos & derivados , Kansas , Mutação , Plantas Daninhas , Sulfonamidas , Triazinas , Glifosato
11.
Planta ; 241(2): 463-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25366557

RESUMO

MAIN CONCLUSION: Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 µM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/enzimologia , Bassia scoparia/metabolismo , Amplificação de Genes/fisiologia , Glicina/análogos & derivados , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Amplificação de Genes/genética , Regulação da Expressão Gênica de Plantas , Glicina/farmacologia , Resistência a Herbicidas/genética , Glifosato
12.
Plant Physiol ; 166(3): 1200-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037215

RESUMO

Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/genética , Evolução Biológica , Mapeamento Cromossômico , Amplificação de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Hibridização in Situ Fluorescente , Modelos Biológicos , Glifosato
13.
Pest Manag Sci ; 61(11): 1035-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15952238

RESUMO

Kochia [Kochia scoparia (L) Schrad] has become resistant to many herbicides used in cropland and railroad rights-of-way in North Dakota and Minnesota. Kochia scoparia plants that had survived annual treatments with diuron and tebuthiuron were sampled along railroad rights-of-way in North Dakota and Minnesota. The samples were screened in the greenhouse for resistance to diuron, tebuthiuron, metribuzin and bromoxynil from 0.5x to 32x the recommended use rates. A resistant K scoparia accession (MN-3R) was confirmed with resistance up to 16-fold higher than recommended use rates for tebuthiuron and diuron and up to 4-fold higher for metribuzin. However, the resistant K scoparia accession was susceptible to bromoxynil even at 50% of the recommended use rate. The herbicide binding region of the psbA gene fragment of eight resistant (R) and seven susceptible (S) K scoparia accessions was PCR-amplified and sequenced for detection of mutations. The psbA gene of four R K scoparia accessions was mutated at residue 219 with substitution of isoleucine for valine (GenBank accession number AY251265). The seven S K scoparia accession sequences were wild-type at this residue (GenBank accession number AY251266). The other four R accessions sequences showed a previously known triazine R mutation with substitution of glycine for serine at residue 264. All 15 K scoparia accessions were wild-type at all other psbA residues within the region analyzed. Resistance to diuron, tebuthiuron and metribuzin among the railroad rights-of-way K scoparia is probably due to the mutation at residue 219 of the psbA gene in some plants, but due to the previously reported Ser(264)Gly substitution in other plants. Target-site resistance associated with a change of valine to isoleucine at residue 219 of the psbA target-site in weeds has previously been reported for Poa annua L selected in diuron-treated grass seed fields, and for Amaranthus powelli S Wats selected in linuron-treated carrot fields. This is the first report of the mutation in herbicide-resistant K scoparia.


Assuntos
Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Diurona/farmacologia , Resistência a Medicamentos , Compostos de Metilureia/farmacologia , Complexo de Proteína do Fotossistema II/genética , Triazinas/farmacologia , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Genes Bacterianos/genética , Herbicidas/farmacologia , Minnesota , Dados de Sequência Molecular , Mutação/genética , North Dakota , Ferrovias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...