Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 220: 22-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104714

RESUMO

Batrachochytrium dendrobatidis (Bd) is a lethal amphibian pathogen, partly due to its ability to evade the immune system of susceptible frog species. In many pathogenic fungi, the antioxidant glutathione is a virulence factor that helps neutralise oxidative stressors generated from host immune cells, as well as other environmental stressors such as heavy metals. The role of glutathione in stress tolerance in Bd has not been investigated. Here, we examine the changes in the glutathione pool after stress exposure and quantify the effect of glutathione depletion on cell growth and stress tolerance. Depletion of glutathione repressed growth and release of zoospores, suggesting that glutathione is essential for life cycle completion in Bd. Supplementation with <2 mM exogenous glutathione accelerated zoospore development, but concentrations >2 mM were strongly inhibitory to Bd cells. While hydrogen peroxide exposure lowered the total cellular glutathione levels by 42 %, glutathione depletion did not increase the sensitivity to hydrogen peroxide. Exposure to cadmium increased total cellular glutathione levels by 93 %. Glutathione-depleted cells were more sensitive to cadmium, and this effect was attenuated by glutathione supplementation, suggesting that glutathione plays an important role in cadmium tolerance. The effects of heat and salt were exacerbated by the addition of exogenous glutathione. The impact of glutathione levels on Bd stress sensitivity may help explain differences in host susceptibility to chytridiomycosis and may provide opportunities for synergistic therapeutics.


Assuntos
Batrachochytrium , Cádmio , Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Cádmio/toxicidade , Animais , Batrachochytrium/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Micoses/microbiologia , Micoses/veterinária , Micoses/metabolismo , Anfíbios/microbiologia
2.
PLoS One ; 17(1): e0262561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030210

RESUMO

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species' conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering-an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


Assuntos
Anuros/metabolismo , Batrachochytrium/patogenicidade , Trematódeos/metabolismo , Anfíbios/microbiologia , Animais , Anuros/microbiologia , Batrachochytrium/metabolismo , Quitridiomicetos/patogenicidade , Doenças Transmissíveis Emergentes , Hibernação/fisiologia , Metamorfose Biológica/fisiologia , Micoses/microbiologia , Estações do Ano , Trematódeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...