Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
1.
Free Radic Biol Med ; 223: 306-324, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134162

RESUMO

The systemic inflammatory response syndrome (SIRS) represents a self-amplifying cascade of inflammatory reactions and pathophysiological states triggered by infectious or non-infectious factors. The identification of disease targets and differential proteins in the liver (the unique and important immune organ) of SIRS mice treated with the lead compound D1 was conducted using the Genecards database and proteomic analysis, respectively. Subsequently, NOTCH1 was identified as the potential hub target via an intersection analysis between the aforementioned differentially expressed proteins and disease targets. Based on our previous research on the structure-activity relationship, we designed and synthesized a series of SIRS-related derivatives, wherein butyl, halogen, and ester groups were incorporated into benzophenone, aiming at exploring the anti-inflammatory protective action from the perspective of macrophage polarization. Notably, these derivatives exhibited a direct binding capability to the O-glucosylation site (SER496) or its vicinities (such as SER492, VAL485) of NOTCH1 using docking, SPR, DARTS, and CETSA techniques. Mechanistically, derivative D6 exerted anti-inflammatory effects via the dual NOTCH pathway. Firstly, it could inhibit NOTCH1 nuclear transcriptional activity, attenuate the interaction between NICD and RBPJK, concurrently suppress NF-κB and NLRP3 inflammasome (NLRP3, ASC, and cleaved CASP1) activation, and promote NICD (NOTCH1 active fragments) ubiquitination metabolism (the nuclear transcriptional pathway). Secondly, it might possess the ability to increase PGC1α level, subsequently, enhance ATP and MMP levels, mitigate ROS production, increase mitochondrial numbers, and ameliorate mitochondrial inflammatory damage (the mitochondrial pathway). Importantly, the activator Jagged1 could effectively reverse the aforementioned effects, while the inhibitor DAPT exhibited a synergistic effect, suggesting that the nuclear transcriptional regulation and mitochondrial regulation were both in a NOTCH1-dependent manner. Subsequently, it effectively alleviated the inflammatory response and preserved organ function as evidenced by up-regulating M2-type macrophage-related anti-inflammatory cytokines (IL10, TGFß, CD206, and ARG1) and down-regulating M1-type macrophage-related pro-inflammatory cytokines (NO, IL6, IL18, iNOS, TNFα, CD86, and IL1ß). In a word, derivative D6 modulated macrophage polarization and effectively mitigated SIRS by targeting inhibition of the dual NOTCH pathway.


Assuntos
Benzofenonas , Mitocôndrias , Receptor Notch1 , Transdução de Sinais , Síndrome de Resposta Inflamatória Sistêmica , Animais , Benzofenonas/farmacologia , Benzofenonas/química , Camundongos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Humanos , Masculino , Simulação de Acoplamento Molecular , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Modelos Animais de Doenças , Células RAW 264.7 , Transcrição Gênica/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Toxicol In Vitro ; 100: 105914, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094913

RESUMO

Estrogen receptor (ER) and androgen receptor (AR) transactivation assays for the benzophenone compounds (BPs) were performed using hERα-HeLa-9903 cells for ER and MMTV/22Rv1_GR-KO cells for AR. Results showed that some BPs, such as BP-1, BP-2, 4OH-BP, 4DHB, and 4-MBP, showed agonistic activity on ER with a higher RPCmax than 1 nM 17-ß estradiol. The other BPs (BP, BP-3, BP-6, BP-7, and BP-8) showed low RPCmax in accordance with the OECD Test guideline (TG) 455 criteria, with BP-4 as the only ER-negative. However, the potency of the BPs was at least 1000 times less than the reference chemical, 17-ß-estradiol. None of the BPs exhibited agonistic activity on AR except BP-2 which showed a small increase in activity. For further evaluation of the estrogenic effect of BPs based on the integrated approaches to testing and assessment (IATA) approach, existing data on ER binding, steroidogenesis, MCF-7 cell proliferation, and in vivo uterotrophic assays were collected and evaluated. There seemed to be a close association between the in vitro data on BPs, especially ER transcriptional activity, and the in vivo results of increased uterine weight. This case study implied that integrated approaches using in vitro data can be a useful tool for the prediction of in vivo data for estrogenic effects, without the need for additional animal toxicity tests.


Assuntos
Benzofenonas , Receptores Androgênicos , Receptores de Estrogênio , Ativação Transcricional , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Humanos , Benzofenonas/toxicidade , Benzofenonas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Animais , Ativação Transcricional/efeitos dos fármacos , Feminino , Estrogênios/toxicidade , Disruptores Endócrinos/toxicidade , Células MCF-7 , Útero/efeitos dos fármacos , Útero/metabolismo
3.
ACS Appl Mater Interfaces ; 16(30): 38989-39004, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39034661

RESUMO

Implant-associated infections and excessive immune responses are two major postsurgical issues for successful implantation. However, conventional strategies including antibiotic treatment and inflammatory regulation are always compromised due to the comodification of various biochemical agents and instances of functional interference. It is imperative to provide implant surfaces with satisfactory antibacterial and anti-inflammatory properties. Here, a dual-effect nanostructured polyetheretherketone (PEEK) surface (NP@PDA/Zn) with bionic mechano-bactericidal nanopillars and immobilized immunomodulatory Zn2+ is designed. The constructed hybrid nanopillars display remarkable antibacterial performance against Gram-negative and Gram-positive strains through the synergy of physical and chemical bactericidal effects imposed by nanopillars and Zn2+. Meanwhile, the immunoregulatory property is evaluated through the investigation of macrophage polarization both in vitro and in vivo, and the results reveal that NP@PDA/Zn could downregulate the expression of M1-related cytokines and decrease the M1 macrophage recruitment to lower the inflammatory response. Notably, the surface exhibited exceptional biocompatibility with discerning biocidal activity between bacterial and mammalian cells and antioxidant performance that effectively scavenges ROS, minimizing potential cytotoxicity. Taken together, NP@PDA/Zn presents a convenient and promising strategy of combining synergistic bactericidal activity and inflammatory regulation without any mutual interference, which can support the development of multifunctional implant-associated materials.


Assuntos
Antibacterianos , Anti-Inflamatórios , Benzofenonas , Nanopartículas Metálicas , Nanoestruturas , Polímeros , Benzofenonas/química , Benzofenonas/farmacologia , Polímeros/química , Polímeros/farmacologia , Nanoestruturas/química , Nanopartículas Metálicas/química , Sinergismo Farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Zinco/química , Zinco/farmacologia , Implantação de Prótese , Sobrevivência Celular/efeitos dos fármacos
4.
Biomed Pharmacother ; 177: 117046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981241

RESUMO

Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3ß inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3ß pathway.


Assuntos
Proliferação de Células , Cerebelo , Glicogênio Sintase Quinase 3 beta , Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cerebelo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Benzofenonas/farmacologia , Camundongos , Células Cultivadas , Masculino
5.
Colloids Surf B Biointerfaces ; 242: 114067, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38981327

RESUMO

Today, it would be difficult for us to live a full life without polymers, especially in medicine, where its applicability is constantly expanding, giving satisfactory results without any harm effects on health. This study focused on the formation of hexagonal domains doped with AgNPs using a KrF excimer laser (λ=248 nm) on the polyetheretherketone (PEEK) surface that acts as an unfailing source of the antibacterial agent - silver. The hexagonal structure was formed with a grid placed in front of the incident laser beam. Surfaces with immobilized silver nanoparticles (AgNPs) were observed by AFM and SEM. Changes in surface chemistry were studied by XPS. To determine the concentration of released Ag+ ions, ICP-MS analysis was used. The antibacterial tests proved the antibacterial efficacy of Ag-doped PEEK composites against Escherichia coli and Staphylococcus aureus as the most common pathogens. Because AgNPs are also known for their strong toxicity, we also included cytotoxicity tests in this study. The findings presented here contribute to the advancement of materials design in the biomedical field, offering a novel starting point for combating bacterial infections through the innovative integration of AgNPs into inert synthetic polymers.


Assuntos
Antibacterianos , Benzofenonas , Escherichia coli , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Polietilenoglicóis , Polímeros , Prata , Staphylococcus aureus , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Polímeros/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Nanopartículas Metálicas/química , Propriedades de Superfície , Cetonas/química , Cetonas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Equipamentos e Provisões/microbiologia , Tamanho da Partícula
6.
Planta Med ; 90(7-08): 631-640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843801

RESUMO

Many polyprenylated acylphloroglucinols with fascinating chemical structures and intriguing biological activities have been identified as key to phytochemicals isolated from Garcinia, Hypericum, and related genera. In the present work, two chiral, tautomeric, highly-oxygenated polyprenylated acylphloroglucinols tethered with acyl and prenyl moieties on a bicyclo[3.3.1]nonanetrione core were isolated from the 95% ethanolic extract of Garcinia gummi-gutta fruit. The structures of both compounds were elucidated based on the NMR and MS data with ambiguity in the exact position of the enol and keto functions at C-1 and C-3 of the core structure. The structures of both polyprenylated acylphloroglucinols were established as a structurally revised guttiferone J and the new iso-guttiferone J with the aid of gauge-independent atomic orbital NMR calculations, CP3 probability analyses, specific rotation calculations, and electronic circular dichroism calculations in combination with the experimental data. The structures of both compounds resemble hyperforin, a potent activator of the human pregnane X receptor. As expected, both compounds showed strong pregnane X receptor activation at 10 µM [7.1-fold (guttiferone J) and 5.0-fold (iso-guttiferone J)], explained by a molecular docking study, necessitating further in-depth investigation to substantiate the herb-drug interaction potential of G. gummi-gutta upon co-administration with pharmaceutical drugs.


Assuntos
Garcinia , Espectroscopia de Ressonância Magnética , Garcinia/química , Estrutura Molecular , Frutas/química , Benzofenonas/química , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Floroglucinol/química , Floroglucinol/isolamento & purificação , Humanos
7.
Macromol Rapid Commun ; 45(16): e2400170, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936823

RESUMO

A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.


Assuntos
Antibacterianos , Biofilmes , Dimetilpolisiloxanos , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Dimetilpolisiloxanos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Polímeros/química , Polímeros/farmacologia , Processos Fotoquímicos , Benzofenonas/química , Benzofenonas/farmacologia , Polimerização , Estrutura Molecular
8.
Cells ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920673

RESUMO

In the context of glaucoma, intraocular pressure (IOP) and age are recognized as the primary factors contributing to its onset and progression. However, significant reductions in IOP fail to completely halt its advancement. An emerging body of literature highlights the role of neuroinflammation in glaucoma. This study aimed to explore Bromfenac's anti-inflammatory properties in mitigating neuroinflammation associated with glaucoma using an ischemia-reperfusion (IR) glaucoma model. Bromfenac's impact on microglia and astrocytes under pressure was assessed via Western blotting and an enzyme-linked immunosorbent assay. Immunohistochemical staining was used to evaluate glial activation and changes in inflammatory marker expression in the IR model. Bromfenac led to the downregulation of inflammatory markers, which were elevated in the conditions of elevated pressure, and necroptosis markers were downregulated in astrocytes. In the IR model, elevated levels of GFAP and Iba-1 indicated glial activation. Following Bromfenac administration, levels of iNOS, COX-2, and PGE2-R were reduced, suggesting a decrease in neuroinflammation. Furthermore, Bromfenac administration in the IR model resulted in the improved survival of retinal ganglion cells (RGCs) and preservation of retinal function, as demonstrated by immunohistochemical staining and electroretinography. In summary, Bromfenac proved effective in diminishing neuroinflammation and resulted in enhanced RGC survival.


Assuntos
Astrócitos , Benzofenonas , Bromobenzenos , Modelos Animais de Doenças , Glaucoma , Traumatismo por Reperfusão , Bromobenzenos/farmacologia , Bromobenzenos/uso terapêutico , Animais , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/complicações , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Glaucoma/complicações , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Masculino , Pressão Intraocular/efeitos dos fármacos , Ratos
9.
Bioorg Med Chem ; 110: 117815, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38943807

RESUMO

The adenylation (A) domain of non-ribosomal peptide synthetases (NRPSs) catalyzes the adenylation reaction with substrate amino acids and ATP. Leveraging the distinct substrate specificity of A-domains, we previously developed photoaffinity probes for A-domains based on derivatization with a 5'-O-N-(aminoacyl)sulfamoyl adenosine (aminoacyl-AMS)-appended clickable benzophenone. Although our photoaffinity probes with different amino acid warheads enabled selective detection, visualization, and enrichment of target A-domains in proteomic environments, the effects of photoaffinity linkers have not been investigated. To explore the optimal benzophenone-based linker scaffold, we designed seven photoaffinity probes for the A-domains with different lengths, positions, and molecular shapes. Using probes 2-8 for the phenylalanine-activating A-domain of gramicidin S synthetase A (GrsA), we systematically investigated the binding affinity and labeling efficiency of the endogenous enzyme in a live producer cell. Our results indicated that the labeling efficiencies of probes 2-8 tended to depend on their binding affinities rather than on the linker length, flexibility, or position of the photoaffinity group. We also identified that probe 2 with a 4,4'-diaminobenzophenone linker exhibits the highest labeling efficiency for GrsA with fewer non-target labeling properties in live cells.


Assuntos
Benzofenonas , Peptídeo Sintases , Marcadores de Fotoafinidade , Benzofenonas/química , Benzofenonas/síntese química , Benzofenonas/farmacologia , Benzofenonas/metabolismo , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/síntese química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Estrutura Molecular
10.
Biomed Pharmacother ; 177: 117018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908208

RESUMO

Pancreatic cancer (PC) shows a high fatality rate that can only be faced with a combination of surgery and chemotherapy or palliative treatment in the case of advanced patients. Besides, PC tumors are enriched with subpopulations of cancer stem cells (CSCs) that are resistant to the existing chemotherapeutic agents, which raises an important need for the identification of new drugs. To fill this gap, we have tested the anti-tumoral activity of microbial extracts, which chemical diversity offers a broad spectrum of potential new bioactive compounds. Extracts derived from the fungus Onychocola sp. CF-107644 were assayed via high throughput screening followed by bioassay-guided fractionation and resulted in the identification and isolation of six benzophenone derivatives with antitumoral activity: onychocolones A-F (#1-6). The structures of the compounds were established by spectroscopic methods, including ESI-TOF MS, 1D and 2D NMR analyses and X-ray diffraction. Compounds #1-4 significantly inhibited the growth of the pancreas tumoral cell lines, with low-micromolar Median Effective Doses (ED50s). Compound #1 (onychocolone A) was prioritized for further profiling due to its pro-apoptotic effect, which was further validated on 3D spheroids and pancreatic CSCs. Protein expression assays showed that the effect was mechanistically linked to the inhibition of MEK onco-signaling pathway. The efficacy of onychocolone A was also demonstrated in vivo by the reduction of tumor growth in a pancreatic xenograft mouse model generated by CSCs. Altogether, the data support that onychocolone A is a promising new small molecule for hit-to-lead development of a new treatment for PC.


Assuntos
Antineoplásicos , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Benzofenonas/farmacologia , Benzofenonas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Ascomicetos/química , Camundongos Nus , Proliferação de Células/efeitos dos fármacos
11.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38836325

RESUMO

Natural and synthetic polymeric materials, particularly soft and hard tissue replacements, are paramount in medicine. We prepared calcium-incorporated sulfonated polyether-ether ketone (SPEEK) polymer membranes for bone applications. The bioactivity was higher after 21 days of immersion in simulated body fluid (SBF) due to calcium concentration in the membrane. We present a new biomaterial healing system composed of calcium and sulfonated polyether ether ketone (Ca-SPEEK) that can function as a successful biomaterial without causing inflammation when tested on bone marrow cells. The Ca-SPEEK exhibited 13 ± 0.5% clot with low fibrin mesh formation compared to 21 ± 0.5% in SPEEK. In addition, the Ca-SPEEK showed higher protein adsorption than SPEEK membranes. As an inflammatory response, IL-1 and TNF-α in the case of Ca-SPEEK were lower than those for SPEEK. We found an early regulation of IL-10 in the case of Ca-SPEEK at 6 h, which may be attributed to the down-regulation of the inflammatory markers IL-1 and TNF-α. These results evidence the innovative bioactivity of Ca-SPEEK with low inflammatory response, opening venues for bone applications.


Assuntos
Materiais Biocompatíveis , Células da Medula Óssea , Cálcio , Polímeros , Fator de Necrose Tumoral alfa , Animais , Camundongos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Polímeros/química , Polímeros/farmacologia , Cálcio/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Benzofenonas/química , Benzofenonas/farmacologia , Inflamação/tratamento farmacológico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Cetonas/química , Cetonas/farmacologia , Teste de Materiais , Interleucina-1/metabolismo , Interleucina-10/metabolismo
12.
ACS Appl Bio Mater ; 7(6): 3981-3990, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38781457

RESUMO

Polyetheretherketone (PEEK), particularly its sulfonated form (SPEEK), has emerged as a promising synthetic biomaterial for artificial bone implants, providing an alternative to conventional titanium metal. However, postoperative infections pose a critical challenge, driven by diverse and antibiotic-resistant bacteria. To address this issue, we propose the modification of the SPEEK surface using a thin graphene oxide (GO) film containing silver (Ag) ions. The resulting coating exhibits substantial antibacterial effects against various pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Experimental assessments elucidate the coating's impact on bacterial adhesion, biofilm formation, and morphology. The results suggest that hindered bacterial growth stems from reduced biofilm production and the controlled release of Ag ions facilitated by the GO coating. The Ag/GO-SPEEK material holds promise as a bioactive implant, addressing the challenges associated with bacterial targeting in bone tissue engineering applications.


Assuntos
Antibacterianos , Benzofenonas , Grafite , Teste de Materiais , Testes de Sensibilidade Microbiana , Polietilenoglicóis , Polímeros , Prata , Grafite/química , Grafite/farmacologia , Prata/química , Prata/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Polímeros/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cetonas/química , Cetonas/farmacologia , Tamanho da Partícula , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
13.
Chem Biol Interact ; 395: 111011, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38653352

RESUMO

Immune homeostasis is key to guarantee that the immune system can elicit effector functions against pathogens and at the same time raise tolerance towards other antigens. A disturbance of this delicate balance may underlie or at least trigger pathologies. Endocrine disrupting chemicals (EDCs) are increasingly recognized as risk factors for immune dysregulation. However, the immunotoxic potential of specific EDCs and their mixtures is still poorly understood. Thus, we aimed to investigate the effect of bisphenol A (BPA) and benzophenone-3 (BP-3), alone and in combination, on in vitro differentiation of T helper (TH)17 cells and regulatory T (Treg) cells. Naïve T cells were isolated from mouse lymphoid tissues and differentiated into the respective TH population in the presence of 0.001-10 µM BP-3 and/or 0.01-100 µM BPA. Cell viability, proliferation and the expression of TH lineage specific transcription factors and cytokines was measured by flow cytometry and CBA/ELISA. Moreover, the transcription of hormone receptors as direct targets of EDCs was quantified by RT-PCR. We found that the highest BPA concentration adversely affected TH cell viability and proliferation. Moreover, the general differentiation potential of both TH populations was not altered in the presence of both EDCs. However, EDC exposure modulated the emergence of TH17 and Treg cell intermediate states. While BPA and BP-3 promoted the development of TH1-like TH17 cells under TH17-differentiating conditions, TH2-like Treg cells occurred under Treg polarization. Interestingly, differential effects could be observed in mixtures of the two tested compounds compared with the individual compounds. Notably, estrogen receptor ß expression was decreased under TH17-differentiating conditions in the presence of BPA and BP-3 as mixture. In conclusion, our study provides solid evidence for both, the immune disruptive potential and the existence of cumulative effects of real nature EDC mixtures on T cell in vitro differentiation.


Assuntos
Compostos Benzidrílicos , Benzofenonas , Diferenciação Celular , Fenóis , Linfócitos T Reguladores , Células Th17 , Fenóis/toxicidade , Fenóis/farmacologia , Animais , Compostos Benzidrílicos/toxicidade , Benzofenonas/farmacologia , Benzofenonas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/citologia , Células Th17/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Células Cultivadas
14.
CNS Spectr ; 29(3): 166-175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487834

RESUMO

OBJECTIVE: The catechol-o-methyltransferase (COMT) inhibitor tolcapone constitutes a potentially useful probe of frontal cortical dopaminergic function. The aim of this systematic review was to examine what is known of effects of tolcapone on human cognition in randomized controlled studies. METHODS: The study protocol was preregistered on the Open Science Framework. A systematic review was conducted using PubMed to identify relevant randomized controlled trials examining the effects of tolcapone on human cognition. Identified articles were then screened against inclusion and exclusion criteria. RESULTS: Of the 22 full-text papers identified, 13 randomized control trials were found to fit the pre-specified criteria. The most consistent finding was that tolcapone modulated working memory; however, the direction of effect appeared to be contingent on the COMT polymorphism (more consistent evidence of improvement in Val-Val participants). There were insufficient nature and number of studies for meta-analysis. CONCLUSION: The cognitive improvements identified upon tolcapone administration, in some studies, are likely to be due to the level of dopamine in the prefrontal cortex being shifted closer to its optimum, per an inverted U model of prefrontal function. However, the results should be interpreted cautiously due to the small numbers of studies. Given the centrality of cortical dopamine to understanding human cognition, studies using tolcapone in larger samples and across a broader set of cognitive domains would be valuable. It would also be useful to explore the effects of different dosing regimens (different doses; and single versus repeated administration).


Assuntos
Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Cognição , Tolcapona , Humanos , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Cognição/efeitos dos fármacos , Catecol O-Metiltransferase/genética , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Adulto , Memória de Curto Prazo/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Artigo em Inglês | MEDLINE | ID: mdl-38518984

RESUMO

Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Benzofenonas , Simulação de Acoplamento Molecular , Animais , Benzofenonas/química , Benzofenonas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Humanos , Relação Estrutura-Atividade , Ratos , Camundongos , Suínos , Protetores Solares/química , Protetores Solares/farmacologia , Protetores Solares/toxicidade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Especificidade da Espécie , Raios Ultravioleta
16.
Z Naturforsch C J Biosci ; 79(3-4): 47-60, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549398

RESUMO

Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-ß-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-ß-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3',5'-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand-protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3',5'-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.


Assuntos
Acne Vulgar , Benzofenonas , Garcinia mangostana , Simulação de Acoplamento Molecular , Xantonas , Xantonas/química , Xantonas/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Garcinia mangostana/química , Humanos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Simulação de Dinâmica Molecular , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/química , Simulação por Computador , Ligação de Hidrogênio
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5265-5274, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270618

RESUMO

Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.


Assuntos
Melanoma Experimental , Camundongos Endogâmicos C57BL , Animais , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Apoptose/efeitos dos fármacos , Camundongos , Masculino , Antineoplásicos/toxicidade , Antineoplásicos/administração & dosagem , Benzofenonas/farmacologia , Benzofenonas/administração & dosagem , Benzofenonas/toxicidade , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Proliferação de Células/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Injeções Subcutâneas , Feminino
18.
Braz J Microbiol ; 55(1): 1011-1015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012513

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the smallest free-living bacteria found in nature; it has an extremely small genome and lacks a cell wall. It is the main etiological agent of porcine enzootic pneumonia (EP), a chronic respiratory disease with worldwide distribution that causes significant losses in swine production. Due to the great economic impact caused by EP, new strategies for treating and controlling this agent are researched. The objective of this study was to verify the anti-M. hyopneumoniae activity of compounds derived from Garcinia brasiliensis and the synergism with the main antimicrobials used in the treatment of EP; this is the first study assessing the synergism between bioactive molecules and antimicrobial compounds in vitro against isolates of M. hyopneumoniae. The minimum inhibitory concentrations (MICs) of the antimicrobials tiamulin, valnemulin, and enrofloxacin, as well as the bioactive compounds guttiferone-A (Gut-A), 7-epiculsone (7-Epic), copper 7-epiculsone (7-Epic-Cu), and benzophenone, were determined. Subsequently, the interactions of antibiotics with the compounds were evaluated using the checkerboard method. Three field M. hyopneumoniae isolates were used, and the J strain was used as a control. The MIC values of the antimicrobials compared to the field isolates were equal to and lower than those of the reference strain J. Among the compounds used, 7-Epic-Cu showed the lowest MIC value. Synergistic association was observed for Gut-A with tiamulin and valnemulin, whereas 7-Epic and 7-Epic-Cu showed synergistic action with enrofloxacin. No synergistic effect was observed for benzophenone. Despite being an initial study, the results suggest that these combinations hold promise for the treatment of infections caused by M. hyopneumoniae.


Assuntos
Anti-Infecciosos , Mycoplasma hyopneumoniae , Suínos , Animais , Enrofloxacina/farmacologia , Cobre/farmacologia , Anti-Infecciosos/farmacologia , Benzofenonas/farmacologia , Diterpenos
19.
Neuropharmacology ; 242: 109770, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858886

RESUMO

Alcohol Use Disorder (AUD) is a significant public health issue in the United States. It affects millions of individuals and their families and contributes to substantial societal and economic burdens. Despite the availability of some pharmacological treatments, there is still a pressing need to develop more effective therapeutic strategies to address the diverse range of symptoms and challenges associated with AUD. Catechol-O-methyltransferase (COMT) inhibition recently emerged as a promising new approach to treating AUD due to its potential to improve cognitive effects commonly associated with AUD. Tolcapone, an FDA-approved COMT inhibitor, has shown some promise for treating AUD; however, its ability to decrease drinking in ethanol-dependent rats has not been well-established. In this study, we evaluated the effects of tolcapone on operant, oral ethanol self-administration in non-dependent and dependent rats, and in rats that self-administered oral saccharin. To induce dependence, rats underwent the chronic intermittent exposure to vapor model, and their drinking levels were assessed during acute withdrawal from ethanol. Our results demonstrated that tolcapone attenuated responding for ethanol in dependent rats only, without affecting self-administration in non-dependent rats or rats self-administering saccharin. Moreover, we found that tolcapone was differentially effective in different estrous phases in female rats. These findings suggest that COMT inhibition, specifically using tolcapone, may be a valuable pharmacotherapy for treating AUD, particularly in individuals who are physically dependent on alcohol. Further research is needed to elucidate the precise mechanisms underlying the observed effects and to assess the potential of COMT inhibitors in a broader population of individuals with AUD.


Assuntos
Alcoolismo , Catecol O-Metiltransferase , Humanos , Ratos , Feminino , Animais , Tolcapona , Alcoolismo/tratamento farmacológico , Etanol , Sacarina , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Nitrofenóis/farmacologia , Nitrofenóis/uso terapêutico , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
20.
Biomaterials ; 303: 122355, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948855

RESUMO

Diabetic infectious microenvironment (DIME) frequently leads to a critical failure of osseointegration by virtue of its main peculiarities including typical hyperglycemia and pathogenic infection around implants. To address the plaguing issue, we devise a glucose-primed orthopedic implant composed of polyetheretherketone (PEEK), Cu-chelated metal-polyphenol network (hauberk coating) and glucose oxidase (GOx) for boosting diabetic osseointegration. Upon DIME, GOx on implants sostenuto consumes glucose to generate H2O2, and Cu liberated from hauberk coating catalyzes the H2O2 to highly germicidal •OH, which massacres pathogenic bacteria through photo-augmented chemodynamic therapy. Intriguingly, the catalytic efficiency of the coating gets greatly improved with the turnover number (TON) of 0.284 s-1. Moreover, the engineered implants exhibit satisfactory cytocompatibility and facilitate osteogenicity due to the presence of Cu and osteopromotive polydopamine coating. RNA-seq analysis reveals that the implants enable to combat infections and suppress pro-inflammatory phenotype (M1). Besides, in vivo evaluations utilizing infected diabetic rat bone defect models at week 4 and 8 authenticate that the engineered implants considerably elevate osseointegration through pathogen elimination, inflammation dampening and osteogenesis promotion. Altogether, our present study puts forward a conceptually new tactic that arms orthopedic implants with glucose-primed antibacterial and osteogenic capacities for intractable diabetic osseointegration.


Assuntos
Diabetes Mellitus , Osseointegração , Ratos , Animais , Glucose/farmacologia , Peróxido de Hidrogênio/farmacologia , Polietilenoglicóis/farmacologia , Benzofenonas/farmacologia , Cetonas/farmacologia , Antibacterianos/farmacologia , Osteogênese , Diabetes Mellitus/tratamento farmacológico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA