Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 38(6): e5862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684194

RESUMO

Antibiotic-associated diarrhea is a common adverse reaction caused by the widespread use of antibiotics. The decrease in probiotics is one of the reasons why antibiotics cause drug-induced diarrhea. However, few studies have addressed the intrinsic mechanism of antibiotics inhibiting probiotics. To investigate the underlying mechanism of levofloxacin against Bifidobacterium adolescentis, we used a metabolomics mass spectrometry-based approach and molecular docking analysis for a levofloxacin-induced B. adolescentis injury model. The results showed that levofloxacin reduced the survival rate of B. adolescentis and decreased the number of B. adolescentis. The untargeted metabolomics analysis identified 27 potential biomarkers, and many of these metabolites are involved in energy metabolism, amino acid metabolism and the lipid metabolism pathway. Molecular docking showed that levofloxacin can bind with aminoacyl-tRNA synthetase and lactic acid dehydrogenase. This result provides a novel insight into the mechanism of the adverse reactions of levofloxacin.


Assuntos
Bifidobacterium adolescentis , Levofloxacino , Metabolômica , Simulação de Acoplamento Molecular , Levofloxacino/química , Levofloxacino/farmacologia , Metabolômica/métodos , Bifidobacterium adolescentis/metabolismo , Bifidobacterium adolescentis/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma/efeitos dos fármacos , Espectrometria de Massas/métodos , Antibacterianos/farmacologia , Antibacterianos/química
2.
Carbohydr Polym ; 275: 118684, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742414

RESUMO

Bioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products. The conversion rate of complex substrates into short XOS was approximately 30% for glucuronoxylan and 8.8% for rye arabinoxylan, after only 4 h; while for PCC, PpXyn10A greatly increased unbranched XOS yields. B. adolescentis fermentation with XOS from beechwood glucuronoxylan produced mainly acetic and lactic acids. Structural analysis shows that while the glycone region of PpXyn10A active site is well preserved, the aglycone region has aromatic interactions in the +2 subsite that may explain why PpXyn10A does not release xylose.


Assuntos
Bacteroidetes , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/química , Oligossacarídeos/química , Xilanos/química , Animais , Bifidobacterium adolescentis/efeitos dos fármacos , Dissacarídeos/química , Fermentação , Glucuronatos/farmacologia , Humanos , Hidrólise , Oligossacarídeos/farmacologia , Prebióticos , Trissacarídeos/química , Xilose/química , Zea mays/química
3.
J Food Sci ; 86(6): 2434-2444, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009670

RESUMO

In this study, an enzyme-assisted extraction method was used to extract Orchis chusua D. Don (Salep) polysaccharide (SP), which was then modified by sulfation, acetylation, phosphorylation, and carboxymethylation to obtain modified polysaccharides. Furthermore, their degree of substitution, chemical composition, and molecular weight were evaluated. The primary structural features were characterized by UV spectra, FT-IR spectra, Congo-red test, and scanning electron microscope. The phosphorylated polysaccharide (SP-P) was demonstrated the highest scavenging ability on hydroxyl radical and growth-promoting activity on Lactobacillus Bulgaricus. The carboxymethylated polysaccharide (SP-C) was exhibited the strongest DPPH and ABTS radical scavenging effects. The acetylated polysaccharide (SP-A) displayed the best proliferation effects on Bifidobacterium adolescentis, whereas the sulfated polysaccharide (SP-S) maintained moderately stable antioxidant and probiotic ability. These findings indicate that the modified polysaccharides had their potential significance as new antioxidants and probiotics for the food industry. PRACTICAL APPLICATION: This article provides a new source for the development of polysaccharide derivatives as new antioxidants and probiotics for the food industry.


Assuntos
Antioxidantes/farmacologia , Bifidobacterium adolescentis/crescimento & desenvolvimento , Sequestradores de Radicais Livres/farmacologia , Orchidaceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Antioxidantes/química , Bifidobacterium adolescentis/efeitos dos fármacos , Sequestradores de Radicais Livres/química
4.
J Immunotoxicol ; 17(1): 10-20, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31909636

RESUMO

Mucosal-associated invariant T-cells (MAIT) can react to metabolites of the vitamins riboflavin and folate which are produced by the human gut microbiota. Since several studies showed that the pesticide chlorpyrifos (CPF) and glyphosate (GLP) can impair the gut microbiota, the present study was undertaken to investigate the impact of CPF and GLP treatment on the metabolism of gut microbiota and the resulting bacteria-mediated modulation of MAIT cell activity. Here, Bifidobacterium adolescentis (B. adolescentis), Lactobacillus reuteri (L. reuteri), and Escherichia coli (E. coli) were treated with CPF (50-200 µM) or GLP (75-300 mg/L) and then used in MAIT cell stimulation assays as well as in vitamin and proteome analyses. All three bacteria were nonpathogenic and chosen as representatives of a healthy human gut microflora. The results showed that E. coli activated MAIT cells whereas B. adolescentis and L. reuteri inhibited MAIT cell activation. CPF treatment significantly increased E. coli-mediated MAIT cell activation. Treatment of B. adolescentis and L. reuteri with CPF and GLP weakened the inhibition of MAIT cell activation. Riboflavin and folate production by the test bacteria was influenced by CPF treatment, whereas GLP had only minor effects. Proteomic analysis of CPF-treated E. coli revealed changes in the riboflavin and folate biosynthesis pathways. The findings here suggest that the metabolism of the analyzed bacteria could be altered by exposure to CPF and GLP, leading to an increased pro-inflammatory immune response.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Herbicidas/toxicidade , Inseticidas/toxicidade , Ativação Linfocitária/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/imunologia , Bifidobacterium adolescentis/efeitos dos fármacos , Bifidobacterium adolescentis/imunologia , Bifidobacterium adolescentis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/imunologia , Buffy Coat/citologia , Clorpirifos/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Escherichia coli/metabolismo , Ácido Fólico/análise , Ácido Fólico/biossíntese , Microbioma Gastrointestinal/imunologia , Glicina/análogos & derivados , Glicina/toxicidade , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Limosilactobacillus reuteri/efeitos dos fármacos , Limosilactobacillus reuteri/imunologia , Limosilactobacillus reuteri/metabolismo , Ativação Linfocitária/imunologia , Proteômica , Riboflavina/análise , Riboflavina/biossíntese , Glifosato
5.
Sci Rep ; 9(1): 4879, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890726

RESUMO

Phosphate binders and dialysis can have harmful side-effects during the treatments of hyperphosphatemia. Therefore, we evaluated the capability of intestinal bacteria (lactic acid bacteria and bifidobacteria) as phosphate-accumulating organisms (PAOs) for phosphate accumulation, with the aim of determining whether PAO-formulated food can prevent hyperphosphatemia in the early stages. However, methods for estimating microbial phosphate-accumulation capacities require significant improvements regarding specificity, cost, and simplicity. The presented method analyzed cell-free broth to assess the phosphate accumulation capability of cells. Active cells and the constructed phosphate-deficient cells were incubated in assay salt media. After incubation, phosphate-deficient cell-free broth was taken as sample and the blank was the active cell-free broth. Therefore, effects of interfering agents and other metabolites were avoided and enhanced the specificity remarkably. Phosphate contents were assessed by reactions with toluidine blue O. In contrast to the case in previous studies, the shift in the first absorbance peak was found to be inversely proportional to the phosphate concentration. The minimum detectable phosphate concentrations for the 11th isolate of Lactobacillus casei JCM 1134 and 8th isolate of Bifidobacterium adolescentis JCM 1275 were determined to be 1.24 and 0.4 mg/L, respectively. Further, the validation results were found to be significant (p-value < 0.05).


Assuntos
Bifidobacterium adolescentis/efeitos dos fármacos , Hiperfosfatemia/metabolismo , Lacticaseibacillus casei/efeitos dos fármacos , Fosfatos/metabolismo , Bifidobacterium adolescentis/metabolismo , Sistema Livre de Células , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Hiperfosfatemia/tratamento farmacológico , Hiperfosfatemia/patologia , Lacticaseibacillus casei/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos/efeitos adversos , Probióticos/isolamento & purificação , Probióticos/metabolismo , Diálise Renal/efeitos adversos
6.
Int J Biol Macromol ; 123: 1070-1078, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30465831

RESUMO

In this study, the relationships between the proliferation effect of polysaccharide fractions from the citrus shrub Fortunella margarita on Bifidobacterium adolescentis ATCC 15703 and their resulting structural changes were investigated. Four polysaccharide fractions, FP20, FP40, FP60, and FP80, were obtained by graded precipitation at ethanol concentrations of 20%, 40%, 60% and 80%, respectively. The results showed that polysaccharide fractions, especially FP20, FP40, and FP60, enhanced the proliferation of B. adolescentis ATCC 15703 and their effects were better than those of FP80, inulin or glucose. Moreover, acetic acid was mainly produced during fermentation. After fermentation, the molecular weight of polysaccharide fractions decreased and the tightly structural chain conformations of FP20, FP40, and FP60 changed to highly branched structures. The prebiotic effect of these polysaccharide fractions might be related to their molecular weight and chain conformation. Thus, these polysaccharides could be used as potential prebiotics.


Assuntos
Bifidobacterium adolescentis/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Rutaceae/química , Bifidobacterium adolescentis/efeitos dos fármacos , Ácidos Graxos/biossíntese , Concentração de Íons de Hidrogênio , Ácido Láctico/biossíntese , Conformação Molecular , Peso Molecular , Polissacarídeos/metabolismo
7.
Sci Rep ; 8(1): 11897, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093677

RESUMO

Multiple mutations in the ß subunit of the RNA polymerase (rpoß) of Mycobacterium tuberculosis (Mtb) are the primary cause of resistance to rifamycin (RIF). In the present study, bifidobacterial rpoß sequences were analyzed to characterize the mutations that contribute to the development of intrinsic resistance to RIF, isoniazid, streptomycin and pyrazinamide. Sequence variations, which mapped to cassettes 1 and 2 of the rpoß pocket, are also found in multidrug-resistant Mtb (MDR Mtb). Growth curves in the presence of osmolytes and different concentrations of RIF showed that the bacteria adapted rapidly by shortening the growth curve lag time. Insight into the adapted rpoß DNA sequences revealed that B. adolescentis harbored mutations both in the RIF pocket and in regions outside the pocket. The minimum inhibitory concentrations (MICs) and mutant prevention concentrations (MPCs) indicated that B. longum, B. adolescentis and B. animalis are resistant to antitubercular drugs. 3D-homology modeling and binding interaction studies using computational docking suggested that mutants had reduced binding affinity towards RIF. RIF-exposed/resistant bacteria exhibited variant protein profiles along with morphological differences, such as elongated and branched cells, surface conversion from rough to smooth, and formation of a concentrating ring.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Bifidobacterium adolescentis/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , RNA Polimerase II/metabolismo , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/crescimento & desenvolvimento , Sítios de Ligação/genética , Farmacorresistência Bacteriana Múltipla/genética , Isoniazida/metabolismo , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Pirazinamida/metabolismo , Pirazinamida/farmacologia , RNA Polimerase II/química , RNA Polimerase II/genética , Rifamicinas/metabolismo , Rifamicinas/farmacologia
8.
Food Chem ; 251: 33-40, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426421

RESUMO

The objective of this study was to fractionate lotus seed resistant starch (LRS3) and investigate their structural properties and prebiotic activities. Two main fractions of resistant starch precipitated gradually by ethanol at concentrations of 20% and 30% were named as LRS3-20% and LRS3-30%, respectively. The swelling power and solubility of LRS3-20% were smaller compared to LRS3-30%, and their moisture and resistant starch contents were not significantly different. LRS3-20% and LRS3-30% had molecular weights mainly of 2.0 × 104-4.0 × 104 and 1.0 × 104-2.0 × 104 g/mol. Layered strips and gully shapes were evident on the rough surfaces of LRS3-20%, while LRS3-30% displayed a relatively smooth surface. Both LRS3-20% and LRS3-30% had a B-type crystalline structure with LRS3-20% containing more ordered structures and double-helices. Furthermore, LRS3-20% displayed higher prebiotic activities against Bifidobacterium adolescentis and Lactobacillus acidophilus compared to LRS3-30% and high amylose maize starch. This effect was related to its rough surface and double helix structure.


Assuntos
Lotus/química , Prebióticos/análise , Amido/química , Amido/farmacologia , Bifidobacterium adolescentis/efeitos dos fármacos , Cromatografia em Gel , Lactobacillus acidophilus/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Peso Molecular , Sementes/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Biosci Biotechnol Biochem ; 82(4): 689-697, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29165050

RESUMO

The genus Bifidobacterium is well known to have beneficial health effects. We discovered that quercetin and related polyphenols enhanced the secretion of anti-inflammatory substances by Bifidobacterium adolescentis. This study investigated characteristics of the anti-inflammatory substances secreted by B. adolescentis. The culture supernatant of B. adolescentis with quercetin reduced the levels of inflammatory mediators in activated macrophages. Spontaneous quercetin degradant failed to increase anti-inflammatory activity, while the enhancement of anti-inflammatory activity by quercetin was sustained after washout of quercetin. Physicochemical treatment of the culture supernatant indicated that its bioactive substances may be heat-stable, non-phenolic, and acidic biomolecules with molecular weights less than 3 kDa. Acetate and lactate have little or no effect on nitric oxide production. Taken together, the anti-inflammatory substances secreted by B. adolescentis may be small molecules but not short chain fatty acids. In agreement with these findings, stearic acid was tentatively identified as a bioactive candidate compound.


Assuntos
Anti-Inflamatórios/farmacologia , Bifidobacterium adolescentis/efeitos dos fármacos , Alimento Funcional , Quercetina/farmacologia , Acetatos/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Bifidobacterium adolescentis/metabolismo , Western Blotting , Linhagem Celular , Cromatografia Líquida , Meios de Cultura , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lactatos/metabolismo , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Peso Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Ácidos Esteáricos/farmacologia
10.
Int J Mol Sci ; 18(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230723

RESUMO

Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains' growth rates, adhesive capacity and effects on the gut microbiome and microenvironment.


Assuntos
Antidiarreicos/efeitos adversos , Bifidobacterium adolescentis/fisiologia , Constipação Intestinal/etiologia , Loperamida/efeitos adversos , Probióticos , Animais , Aderência Bacteriana , Bifidobacterium adolescentis/efeitos dos fármacos , Biomarcadores , Constipação Intestinal/diagnóstico , Constipação Intestinal/terapia , Defecação , Modelos Animais de Doenças , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Suco Gástrico , Células HT29 , Humanos , Melena , Camundongos , Microbiota , Probióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...