Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.592
Filtrar
1.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003043

RESUMO

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Assuntos
Biomassa , Mineração , Poluentes do Solo , Solo , Solo/química , Pirólise , Plantas , Biodegradação Ambiental
2.
Sci Rep ; 14(1): 16417, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013910

RESUMO

The goal of the current work was to optimize the growth parameters needed to manufacture agarase enzyme from a non-marine PI strain of Bacillus subtilis on an agar-based medium. Using Plackett-Burman design (PBD), nine process parameters were evaluated, and agar, peptone, and yeast-extract were identified as the most significant independent factors influencing agarase production with confidence levels more than 90%. To evaluate the optimal concentrations of the indicated process parameters on agarase production, the Box-Behnken design (BBD) was applied. After optimization, B. subtilis strain PI produced 119.8 U/ml of agarase, representing a 1.36-fold increase. In addition the agar hydrolysate fermented products contain the liberated oligosaccharide acts as strong antioxidant which has 62.4% scavenging activity. Also, the agarase yields increased (1141.12, 1350.253, 1684.854 and 1921.863 U/ml) after substitution the agar with algal biomass of Carolina officinalis at different concentrations (2, 5, 10 and 15%), respectively. After completing the saccharification process, the resulted hydrolysate was used to produce ethanol through fermentation with Pichia pastoris yeast strain as an economical method giving yields (6.68317, 7.09748, 7.75648 and 8.22332 mg/ml), that are higher than using yeast extract peptone dextrose (YPD) medium (4.461 mg/ml).


Assuntos
Bacillus subtilis , Biomassa , Etanol , Fermentação , Glicosídeo Hidrolases , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/enzimologia , Etanol/metabolismo , Glicosídeo Hidrolases/metabolismo , Meios de Cultura/química , Ágar/química , Hidrólise , Antioxidantes/metabolismo
3.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013920

RESUMO

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , Biomassa
4.
Sci Rep ; 14(1): 16372, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013977

RESUMO

The aim of the experiment was to determine the yield of Miscanthus × giganteus M 19 in the first three years of cultivation and its bioaccumulation of Zn and Ni in aboveground and underground parts in response to different doses of sewage sludge and substrate left after the production of white mushrooms. Miscanthus × giganteus is a grass species that adapts to different environmental conditions and can be grown in various climatic zones of Europe and North America. In April 2018 the experiment was established in a randomized block design and with four replications in central-eastern Poland. Waste organic materials (municipal sewage sludge and mushroom substrate) were applied to the soil in 2018 in the spring before the rhizomes of giant miscanthus were planted. Each year (from 2018 to 2020) biomass was harvested in December. The yield of fresh and dry matter and the total content of Zn and Ni, after wet mineralization of plant samples, were determined by optical emission spectrometry (ICP-OES). After the third year of cultivation, the content of Zn and Ni in rhizomes and in the soil was determined again. In relation to control, an increase in the yield of miscanthus biomass in response to organic waste materials was noted. Plants responded to mushroom substrate (SMS) with the highest average yield (16.89 Mgha-1DM), while on the control plot it was 13.86 Mg  ha-1DM. After the third year of cultivation, rhizomes of Miscanthus x giganteus contained higher amounts of Zn (63.3 mg kg-1) and Ni (7.54 mg kg-1) than aboveground parts (40.52 and 2.07 mg kg-1), which indicated that heavy metals were retained in underground parts.


Assuntos
Biomassa , Níquel , Poaceae , Esgotos , Solo , Zinco , Poaceae/metabolismo , Níquel/análise , Zinco/análise , Zinco/metabolismo , Solo/química , Agaricales/metabolismo , Agaricales/química , Rizoma/metabolismo , Rizoma/química , Polônia
5.
Huan Jing Ke Xue ; 45(7): 4196-4205, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022966

RESUMO

Taking the typical yellow soil in Guizhou as the research object, four treatments were set up: no fertilization (CK), single application of chemical fertilizer (NP), 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2(NPM)], and 100% organic fertilizer instead of chemical nitrogen fertilizer (M). The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon (SOC), total nitrogen (TN) content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index (CPMI) were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 (NPM) treatment significantly increased the contents of soil readily oxidizable organic carbon (ROC333, ROC167), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 (NPM) treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 (NPM) and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components (P<0.01). Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components (P<0.05). Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.


Assuntos
Carbono , Fertilizantes , Glycine max , Nitrogênio , Compostos Orgânicos , Solo , Zea mays , Solo/química , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , China , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento
6.
Huan Jing Ke Xue ; 45(7): 4279-4292, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022973

RESUMO

Microbial fertilizers have the characteristics of high efficiency and environmental protection in improving saline soils, and the application of functional microbial fertilizers is of great significance for the green abatement of saline barriers and the improvement of soil quality in coastal areas. The experiment was based on moderately saline soil in the coastal area of Hebei Province, with corn as the indicator crop, on the basis of conventional chemical fertilizer application. Different microbial fertilizer treatments, namely, T1 (conventional chemical fertilizer 750 kg·hm-2 + compound microbial agent 75 kg·hm-2), T2 (conventional chemical fertilizer 750 kg·hm-2 + Bacillus megaterium 300 kg·hm-2), T3 (conventional chemical fertilizer 750 kg·hm-2 + B. mucilaginosus 300 kg·hm-2), T4 (conventional chemical fertilizer 750 kg·hm-2 + organic silicon fertilizer 600 kg·hm-2), T5 (conventional chemical fertilizer 750 kg·hm-2 + bio-organic fertilizer 600 kg·hm-2), T6 (conventional fertilizer 750 kg·hm-2 + active microalgae 15 kg·hm-2), and CK (only fertilizer 750 kg·hm-2), were used for these seven treatments, to study the effects of different microbial fertilizers on soil nutrients, salinity, bacterial community, and corn yield and economic efficiency during two critical periods (V12 stage and maturity stage) of corn. The results showed that compared with that in CK, T1 significantly increased soil total nitrogen (TN) and available phosphorus (AP) contents during the whole growth period. Over the whole reproductive period, soil organic matter (OM) at maturity increased by 10.35% over the V12 stage compared to that in CK, but there was no significant difference between treatments. Compared with that in CK, T5 and T6 significantly reduced soil total salinity and Ca2+ content during the whole growth period by an average of 14.51%-18.48% and 24.25%-25.51%. T1 significantly increased the bacterial diversity index over the whole growth period by 45.16% compared to that in CK. The dominant soil phyla were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, and the dominant genera were Bacillus and Geminicoccaceae. The most abundant functions of the bacterial community in the study area were chemoheterotrophy and aerobic chemoheterotrophy, with average relative abundances of 28.89% and 27.11%, and T3 and T6 significantly improved soil N cycling function. The results of redundancy analysis (RDA) indicated that Na+, SO42-, pH, and EC were important factors driving the structure of the bacterial community, and correlation heatmaps showed that Na+, SO42-, pH, and EC were significantly and positively correlated mainly with the phylum Planctomycetota, whereas soil OM and TN were significantly and positively correlated with Cyanobacteria. Compared with that in CK, T6 increased the relative abundance of Cyanobacteria and optimized the bacterial community structure during the whole growth period. Using recommended dosages of bacterial fertilizers T1 and T6 increased maize yield by 7.31%-24.83% and economic efficiency by 9.05%-23.23%, respectively. The preliminary results of soil chemical properties and yield correlation analysis revealed that EC, AP, HCO3-, and Mg2+ were the obstacle factors limiting soil productivity in coastal areas. In conclusion, the use of the compound bacterial agent (T1) and active microalgae (T6) at the recommended dosage can significantly enhance soil nutrients, reduce salinity, and improve the structural diversity of soil bacterial communities, which not only ensures the increase in maize yield and efficiency but also realizes the efficient use of microbial fertilizers and the improvement of soil quality.


Assuntos
Bacillus megaterium , Fertilizantes , Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Solo/química , Bacillus megaterium/crescimento & desenvolvimento , Bacillus megaterium/metabolismo , China , Salinidade , Biomassa , Água do Mar/microbiologia , Fósforo/análise
7.
New Microbiol ; 47(2): 123-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023521

RESUMO

The escalating global population poses formidable challenges to addressing pressing environmental concerns, hindering progress towards sustainable development goals. Unregulated human activities, particularly the excessive reliance on fossil fuels and unsustainable agricultural practices, contribute to pollution, climate change, and resource depletion. Inadequate waste management systems exacerbate environmental degradation and pose risks to public health. Leveraging biological resources and urban/industrial waste emerges as a promising solution. Various waste materials, such as food waste and agro-industrial by-products, have been efficiently repurposed into valuable bio-based products. This review explores the diverse applications of agricultural and food waste repurposing, including microbial production of biopolymers and biosurfactants, as well as the extraction of biologically active compounds for potential antimicrobial drugs.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Humanos , Biomassa , Gerenciamento de Resíduos/métodos , Materiais Biocompatíveis , Resíduos/análise
8.
PeerJ ; 12: e17650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952965

RESUMO

Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods: LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.


Assuntos
Ácido Acético , Acetobacter , Biomassa , Carragenina , Carragenina/química , Acetobacter/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Luffa/química , Adsorção , Celulose/metabolismo , Celulose/química , Biofilmes/crescimento & desenvolvimento
9.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963450

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Assuntos
Benzo(a)pireno , Biodegradação Ambiental , Ácido Cítrico , Poluentes do Solo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Lacase/metabolismo , Microbiologia do Solo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomassa
10.
BMC Ecol Evol ; 24(1): 89, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956462

RESUMO

Galician forests in northwestern Spain are subject to frequent wildfires with high environmental and economic costs. In addition, due to the consequences of climate change, these fires are becoming more virulent, occurring throughout the year, and taking place in populated areas, in some cases involving the loss of human life. Therefore, forest fire prevention is even more relevant than mitigating its consequences. Given the costs involved in forestry work, alternative measures to reduce fuel load and create vegetation gaps are needed. One involves grazing by an endemic species of feral horses (Equus ferus atlanticus) that feed on thicket-forming gorse (Ulex europaeus). In a 100-ha forest fenced study area stocked with 11 horses, four 50 m2 enclosed plots prevented the access of these wild animals to the vegetation, with the aim of manipulating their impact on the reduction of forest biomass. The measurement of biomass volumes is an important method that can describe the assessment of wildfire risks, unfortunately, high-resolution data collection at the regional scale is very time-consuming. The best result can be using drones (unmanned aerial vehicles - UAVs) as a method of collecting remotely sensed data at low cost. From September 2018 to November 2020, we collected information about aboveground biomass from these four enclosed plots and their surrounding areas available for horses to forage, via UAV. These data, together with environmental variables from the study site, were used as input for a fire model to assess the differences in the surface rate of spread (SROS) among grazed and ungrazed areas. Our results indicated a consistent but small reduction in the SROS between 0.55 and 3.10 m/min in the ungrazed enclosured plots in comparison to their grazed surrounding areas (which have an SROS between 15 and 25 m/min). The research showed that radar remote sensing (UAV) can be used to map forest aboveground biomass, and emphasized the importance and role of feral horses in Galicia as a prevention tool against wildfires in gorse-dominated landscapes.


Assuntos
Biomassa , Tecnologia de Sensoriamento Remoto , Animais , Cavalos/fisiologia , Espanha , Tecnologia de Sensoriamento Remoto/métodos , Florestas , Pradaria , Incêndios Florestais , Conservação dos Recursos Naturais/métodos
11.
Physiol Plant ; 176(4): e14430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981734

RESUMO

Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.


Assuntos
Parede Celular , Lignina , Caules de Planta , Poaceae , Estresse Salino , Parede Celular/química , Parede Celular/metabolismo , Lignina/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/química , Caules de Planta/metabolismo , Pectinas/metabolismo , Celulose/metabolismo , Genótipo , Biomassa , Cloreto de Sódio/farmacologia
12.
Methods Mol Biol ; 2827: 85-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985264

RESUMO

The method of plant micropropagation is widely used to obtain genetically homogeneous and infection-free plants for the needs of various industries and agriculture. Optimization of plant growth and development conditions plays a key role in economically successful micropropagation. Computer technologies have provided researchers with new approaches for modeling and a better understanding of the role of the factors involved in plant growth in vitro. To develop new models for optimizing growth conditions, we used plants with a high speed of vegetative in vitro reproduction, such as duckweed (Wolffia arrhiza and Lemna minor). Using the development of the optimal modeling of the biological processes, we have obtained the prescriptions for an individually balanced culture medium that enabled us to obtain 1.5-2.0 times more duckweed biomass with a 1.5 times higher protein concentration in the dry mass. Thus, we have demonstrated that the method of optimization modeling of the biological processes based on solving multinomial tasks from the series of quadratic equations can be used for the optimization of trophic needs of plants, specifically for micropropagation of duckweeds in vitro.


Assuntos
Araceae , Biomassa , Araceae/crescimento & desenvolvimento , Araceae/genética , Meios de Cultura/química , Modelos Teóricos , Modelos Biológicos
13.
Biotechnol J ; 19(7): e2400092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987222

RESUMO

Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.


Assuntos
Anticorpos Monoclonais , Biomassa , Reatores Biológicos , Medicamentos Biossimilares , Técnicas de Cultura de Células , Cricetulus , Células CHO , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Perfusão/métodos
14.
J Environ Manage ; 365: 121633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955044

RESUMO

The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.


Assuntos
Oxirredução , Peróxido de Hidrogênio/química , Ferro/química , Espécies Reativas de Oxigênio , Biomassa
15.
J Environ Manage ; 365: 121709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968889

RESUMO

The current work investigated the performance of an Integrated Fixed-Film Activated Sludge Sequencing Batch Reactor (IFAS-SBR) for Biological Nitrogen Removal (BNR) from mature landfill leachate through the nitritation-denitritation process. During the experimental period two IFAS-SBR configurations were examined using two different biocarrier types with the same filling ratio (50%). The dissolved oxygen (DO) concentration ranged between 2 and 3 mg/L and 4-6 mg/L in the first (baseline-IFAS) and the second (S8-IFAS) setup, respectively. Baseline-IFAS operated for 542 days and demonstrated a high and stable BNR performance maintaining a removal efficiency above 90% under a Nitrogen Loading Rate (NLR) up to 0.45 kg N/m3-d, while S8-IFAS, which operated for 230 days, was characterized by a limited and unstable BNR performance being unable to operate sufficiently under an NLR higher than 0.20 kg N/m3-d. It also experienced a severe inhibition period, when the BNR process was fully deteriorated. Moreover, S8-IFAS suffered from extensive biocarrier stagnant zones and a particularly poor sludge settleability. The attached biomass cultivated in both IFAS configurations had a negligible content of nitrifying bacteria, probably attributed to the insufficient DO diffusion through the biofilm, caused by the low DO concentration in the liquid in the baseline case and the extensive stagnant zones in the S8-IFAS case. As a result of the high biocarrier filling ratio, the S8-IFAS was unstable and low. This was probably attributed to the mass transfer limitations caused by the biocarrier stagnant zones, which hinder substrate and oxygen diffusion, thus reducing the biomass activity and increasing its vulnerability to inhibitory and toxic factors. Hence, the biocarrier filling fraction is a crucial parameter for the efficient operation of the IFAS-SBR and should be carefully selected taking into consideration both the media type and the overall reactor configuration.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Biomassa
16.
Sci Rep ; 14(1): 15794, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982208

RESUMO

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Assuntos
Biofortificação , Brassica , Hidroponia , Iodatos , Iodo , Iodo/metabolismo , Iodo/análise , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Iodatos/metabolismo , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Compostos de Potássio/metabolismo , Clorofila/metabolismo
17.
BMC Plant Biol ; 24(1): 659, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987675

RESUMO

BACKGROUND: The potential of phytoremediation using garlic monoculture (MC) and intercropping (IC) system with perennial ryegrass to enhance the uptake of cadmium (Cd), chromium (Cr), and lead (Pb) were investigated. RESULTS: Positive correlations were found between MC and IC systems, with varying biomass. Production of perennial ryegrass was affected differently depending on the type of toxic metal present in the soil. Root growth inhibition was more affected than shoot growth inhibition. The total biomass of shoot and root in IC was higher than MC, increasing approximately 3.7 and 2.9 fold compared to MC, attributed to advantages in root IC crop systems. Photosystem II efficiency showed less sensitivity to metal toxicity compared to the control, with a decrease between 10.07-12.03%. Among gas exchange parameters, only Cr significantly affected physiological responses by reducing transpiration by 69.24%, likely due to leaf chlorosis and necrosis. CONCLUSION: This study exhibited the potential of garlic MC and IC with perennial ryegrass in phytoremediation. Although the different metals affect plant growth differently, IC showed advantages over MC in term biomass production.


Assuntos
Biodegradação Ambiental , Alho , Lolium , Metais Pesados , Fotossíntese , Lolium/crescimento & desenvolvimento , Lolium/efeitos dos fármacos , Lolium/fisiologia , Lolium/metabolismo , Fotossíntese/efeitos dos fármacos , Metais Pesados/toxicidade , Alho/crescimento & desenvolvimento , Alho/fisiologia , Alho/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biomassa , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cádmio/toxicidade , Cádmio/metabolismo
18.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987695

RESUMO

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Assuntos
Carvão Vegetal , Perfilação da Expressão Gênica , Nicotiana , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Transcriptoma , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Fotossíntese/efeitos dos fármacos
19.
Cells ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994989

RESUMO

The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.


Assuntos
Biodegradação Ambiental , Chlamydomonas , Microalgas , Chlamydomonas/metabolismo , Microalgas/metabolismo , Biocombustíveis , Biomassa , Biotecnologia/métodos
20.
Harmful Algae ; 137: 102654, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003020

RESUMO

Microbial blooms have been reported in the First Generation Magnox Storage Pond at the Sellafield Nuclear Facility. The pond is kept alkaline with NaOH to minimise fuel rod corrosion, however alkali-tolerant microbial blooms dominated by the cyanobacterium Pseudanabaena catenata are able to thrive in this hostile environment. This study assessed the impact of alternative alkali-dosing regimens (KOH versus NaOH treatment) on biomass accumulation, using a P. catenata dominated mixed culture, which is representative of the pond environment. Optical density was reduced by 40-67 % with KOH treatment over the 3-month chemostat experiment. Microbial community analysis and proteomics demonstrated that the KOH-dependent inhibition of cell growth was mostly specific to P. catenata. The addition of KOH to nuclear storage ponds may therefore help control growth of this pioneer photosynthetic organism due to its sensitivity to potassium, while maintaining the high pH needed to inhibit the corrosion of stored nuclear fuel.


Assuntos
Cianobactérias , Lagoas , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Lagoas/microbiologia , Compostos de Potássio/farmacologia , Hidróxidos/farmacologia , Potássio/metabolismo , Potássio/análise , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...