Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.251
Filtrar
1.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824548

RESUMO

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Assuntos
Biocatálise , Escherichia coli , Ácido Gálico , Engenharia Metabólica , Ácido Gálico/metabolismo , Ácido Gálico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Metiltransferases/metabolismo , Metiltransferases/genética , Ácido Chiquímico/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Biotransformação
2.
Molecules ; 29(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731651

RESUMO

The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.


Assuntos
Espectrometria de Massas , Miconazol , Microssomos Hepáticos , Miconazol/química , Miconazol/metabolismo , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo , Espectrometria de Massas/métodos , Técnicas Eletroquímicas/métodos , Antifúngicos/química , Antifúngicos/metabolismo , Biotransformação
3.
World J Microbiol Biotechnol ; 40(7): 219, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809492

RESUMO

Protectins, 10,17-dihydroxydocosahexaenoic acids (10,17-DiHDHAs), are belonged to specialized pro-resolving mediators (SPMs). Protectins are generated by polymorphonuclear leukocytes in humans and resolve inflammation and infection in trace amounts. However, the quantitative production of protectin DX 10-epimer (10-epi-PDX, 10R,17S-4Z,7Z,11E,13Z,15E,19Z-DiHDHA) has been not attempted to date. In this study, 10-epi-PDX was quantitatively produced from docosahexaenoic acid (DHA) by serial whole-cell biotransformation of Escherichia coli expressing arachidonate (ARA) 8R-lipoxygenase (8R-LOX) from the coral Plexaura homomalla and E. coli expressing ARA 15S-LOX from the bacterium Archangium violaceum. The optimal bioconversion conditions to produce 10R-hydroxydocosahexaenoic acid (10R-HDHA) and 10-epi-PDX were pH 8.0, 30 °C, 2.0 mM DHA, and 4.0 g/L cells; and pH 8.5, 20 °C, 1.4 mM 10R-HDHA, and 1.0 g/L cells, respectively. Under these optimized conditions, 2.0 mM (657 mg/L) DHA was converted into 1.2 mM (433 mg/L) 10-epi-PDX via 1.4 mM (482 mg/L) 10R-HDHA by the serial whole-cell biotransformation within 90 min, with a molar conversion of 60% and volumetric productivity of 0.8 mM/h (288 mg/L/h). To the best of our knowledge, this is the first quantitative production of 10-epi-PDX. Our results contribute to the efficient biocatalytic synthesis of SPMs.


Assuntos
Antozoários , Biotransformação , Ácidos Docosa-Hexaenoicos , Escherichia coli , Ácidos Docosa-Hexaenoicos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Antozoários/microbiologia , Antozoários/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato Lipoxigenases/metabolismo , Araquidonato Lipoxigenases/genética , Concentração de Íons de Hidrogênio
4.
J Hazard Mater ; 472: 134594, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754233

RESUMO

Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.


Assuntos
Biotransformação , Éteres Difenil Halogenados , Ferro , Éteres Difenil Halogenados/metabolismo , Éteres Difenil Halogenados/química , Ferro/química , Ferro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Retardadores de Chama/metabolismo , Adsorção , Plantas/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791577

RESUMO

The search for new substances of natural origin, such as flavonoids, is necessary in the fight against the growing number of diseases and bacterial resistance to antibiotics. In our research, we wanted to check the influence of flavonoids with chlorine or bromine atoms and a nitro group on pathogenic and probiotic bacteria. We synthesized flavonoids using Claisen-Schmidt condensation and its modifications, and through biotransformation via entomopathogenic filamentous fungi, we obtained their glycoside derivatives. Biotransformation yielded two new flavonoid glycosides: 8-amino-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside and 6-bromo-8-nitroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. Subsequently, we checked the antimicrobial properties of the aforementioned aglycon flavonoid compounds against pathogenic and probiotic bacteria and yeast. Our studies revealed that flavones have superior inhibitory effects compared to chalcones and flavanones. Notably, 6-chloro-8-nitroflavone showed potent inhibitory activity against pathogenic bacteria. Conversely, flavanones 6-chloro-8-nitroflavanone and 6-bromo-8-nitroflavanone stimulated the growth of probiotic bacteria (Lactobacillus acidophilus and Pediococcus pentosaceus). Our research has shown that the presence of chlorine, bromine, and nitro groups has a significant effect on their antimicrobial properties.


Assuntos
Biotransformação , Bromo , Cloro , Flavonoides , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/síntese química , Cloro/química , Bromo/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química
6.
Environ Sci Technol ; 58(21): 9113-9124, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743028

RESUMO

The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized quinone product 6PPD-quinone (6PPD-Q) in rubber have attracted attention due to the ecological risk that they pose. Both 6PPD and 6PPD-Q have been detected in various environments that humans cohabit. However, to date, a clear understanding of the biotransformation of 6PPD-Q and a potential biomarker for exposure in humans are lacking. To address this issue, this study presents a comprehensive analysis of the extensive biotransformation of 6PPD-Q across species, encompassing both in vitro and in vivo models. We have tentatively identified 17 biotransformation metabolites in vitro, 15 in mice in vivo, and confirmed the presence of two metabolites in human urine samples. Interestingly, different biotransformation patterns were observed across species. Through semiquantitative analysis based on peak areas, we found that almost all 6PPD-Q underwent biotransformation within 24 h of exposure in mice, primarily via hydroxylation and subsequent glucuronidation. This suggests a rapid metabolic processing of 6PPD-Q in mammals, underscoring the importance of identifying effective biomarkers for exposure. Notably, monohydroxy 6PPD-Q and 6PPD-Q-O-glucuronide were consistently the most predominant metabolites across our studies, highlighting monohydroxy 6PPD-Q as a potential key biomarker for epidemiological research. These findings represent the first comprehensive data set on 6PPD-Q biotransformation in mammalian systems, offering insights into the metabolic pathways involved and possible exposure biomarkers.


Assuntos
Benzoquinonas , Biomarcadores , Biotransformação , Exposição Ambiental , Poluentes Ambientais , Fenilenodiaminas , Animais , Camundongos , Exposição Ambiental/análise , Fenilenodiaminas/sangue , Fenilenodiaminas/metabolismo , Fenilenodiaminas/urina , Benzoquinonas/sangue , Benzoquinonas/metabolismo , Benzoquinonas/urina , Hidroxilação , Biomarcadores/metabolismo , Biomarcadores/urina , Borracha/química , Masculino , Adulto Jovem , Adulto , Ratos , Microssomos Hepáticos/metabolismo , Feminino , Poluentes Ambientais/sangue , Poluentes Ambientais/metabolismo , Poluentes Ambientais/urina
7.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708761

RESUMO

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Assuntos
Biotransformação , Daucus carota , Ivermectina , Lactuca , Oryza , Raízes de Plantas , Ivermectina/metabolismo , Ivermectina/análogos & derivados , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Lactuca/metabolismo , Lactuca/química , Lactuca/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/química , Daucus carota/metabolismo , Daucus carota/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento
8.
Chemosphere ; 358: 142238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705413

RESUMO

Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.


Assuntos
Benzofenonas , Citocromo P-450 CYP1A1 , Disruptores Endócrinos , Benzofenonas/metabolismo , Disruptores Endócrinos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Teoria Quântica , Humanos , Simulação de Dinâmica Molecular , Catálise , Biotransformação
9.
Biotechnol Adv ; 73: 108377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763231

RESUMO

Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Biotransformação , Trifosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
10.
J Hazard Mater ; 472: 134623, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754231

RESUMO

This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.


Assuntos
Arsênio , Biotransformação , Microbioma Gastrointestinal , Caramujos , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Arsênio/metabolismo , Arsênio/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Caramujos/metabolismo , Caramujos/efeitos dos fármacos , Água Doce , Bioacumulação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia
11.
Bioresour Technol ; 402: 130782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701982

RESUMO

Microbial production of versatile applicability medium-chain fatty acids (MCFAs) (C6-C10) from waste activated sludge (WAS) provides a pioneering approach for wastewater treatment plants (WWTPs) to achieve carbon recovery. Mounting studies emerged endeavored to promote the MCFAs production from WAS while struggling with limited MCFAs production and selectivity. Herein, this review covers comprehensive introduction of the transformation process from WAS to MCFAs and elaborates the mechanisms for unsatisfactory MCFAs production. The enhancement strategies for biotransformation of WAS to MCFAs was presented. Especially, the robust performance of iron-based materials is highlighted. Furthermore, knowledge gaps are identified to outline future research directions. Recycling MCFAs from WAS presents a promising option for future WAS treatment, with iron-based materials emerging as a key regulatory strategy in advancing the application of WAS-to-MCFAs biotechnology. This review will advance the understanding of MCFAs recovery from WAS and promote sustainable resource management in WWTPs.


Assuntos
Ácidos Graxos , Esgotos , Ácidos Graxos/metabolismo , Bactérias/metabolismo , Biotransformação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Ferro
12.
Water Res ; 257: 121718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723358

RESUMO

Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.


Assuntos
Biotransformação , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Adsorção , Anaerobiose , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
13.
J Hazard Mater ; 472: 134541, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714055

RESUMO

Domoic acid (DA)-producing algal blooms are a global marine environmental issue. However, there has been no previous research addressing the question regarding the fate of DA in marine benthic environments. In this work, we investigated the DA fate in the water-sediment microcosm via the integrative analysis of a top-down metabolic model, metagenome, and metabolome. Results demonstrated that biodegradation is the leading mechanism for the nonconservative attenuation of DA. Specifically, DA degradation was prominently completed by the sediment aerobic community, with a degradation rate of 0.0681 ± 0.00954 d-1. The DA degradation pathway included hydration, dehydrogenation, hydrolysis, decarboxylation, automatic ring opening of hydration, and ß oxidation reactions. Moreover, the reverse ecological analysis demonstrated that the microbial community transitioned from nutrient competition to metabolic cross-feeding during DA degradation, further enhancing the cooperation between DA degraders and other taxa. Finally, we reconstructed the metabolic process of microbial communities during DA degradation and confirmed that the metabolism of amino acid and organic acid drove the degradation of DA. Overall, our work not only elucidated the fate of DA in marine environments but also provided crucial insights for applying metabolic models and multi-omics to investigate the biotransformation of other contaminants.


Assuntos
Biotransformação , Sedimentos Geológicos , Ácido Caínico , Toxinas Marinhas , Ácido Caínico/análogos & derivados , Ácido Caínico/metabolismo , Sedimentos Geológicos/microbiologia , Toxinas Marinhas/metabolismo , Microbiota , Metaboloma , Biodegradação Ambiental , Metagenoma , Poluentes Químicos da Água/metabolismo , Multiômica
14.
J Hazard Mater ; 472: 134535, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718515

RESUMO

As a frequently detected per- and polyfluoroalkyl substance in the environment, 6:6 perfluoroalkylhypophosphinic acid (6:6 PFPiA) is vulnerable to transformation in the liver of organisms, but the transformation in gut is still unclear. This study investigates the molecular mechanisms of 6:6 PFPiA transformation in the gut of Xenopus laevis upon a 28-day exposure in water. Before Day 16, a notable correlation (p = 0.03) was observed between the transformation product (PFHxPA) and cytochrome P450 (CYP450) enzyme concentration in gut. This suggests that CYP450 enzymes played an important role in the transformation of 6:6 PFPiA in the gut, which was verified by an in vitro incubation with gut tissues, and supported by the molecular docking results of 6:6 PFPiA binding with CYP450 enzymes. From the day 16, the CYP450 concentration in gut decreased by 31.3 % due to the damage caused by 6:6 PFPiA, leading to a decrease in the transformation capacity in gut, but the transformation rate was stronger than in liver. This was in contrast with the in vitro experiment, where transformation was stronger in liver. In the mean time, the abundance of Bacteroidota in gut increased, which released hydrolytic enzyme and then could participate in the transformation as well. This study reveals the potential of the gut in metabolizing environmental pollutants, and provides profound insights into the potential health risks caused by 6:6 PFPiA in organisms.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microbioma Gastrointestinal , Xenopus laevis , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Simulação de Acoplamento Molecular , Fígado/enzimologia , Fígado/metabolismo , Biotransformação , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo
15.
Environ Pollut ; 351: 124048, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714230

RESUMO

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.


Assuntos
Mercúrio , Mercúrio/metabolismo , Mapas de Interação de Proteínas , Proteínas de Bactérias/metabolismo , Biotransformação , Sulfatos/metabolismo , Bactérias/metabolismo , Proteômica , Bactérias Redutoras de Enxofre/metabolismo
16.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759532

RESUMO

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Assuntos
Aflatoxina B1 , Ração Animal , Biotransformação , Dípteros , Moscas Domésticas , Larva , Animais , Aflatoxina B1/metabolismo , Moscas Domésticas/metabolismo , Ração Animal/análise , Espectrometria de Massas em Tandem
17.
Microbiol Spectr ; 12(6): e0403123, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38738925

RESUMO

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.


Assuntos
Biotransformação , Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Extratos Vegetais , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fezes/microbiologia , Adulto , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Masculino , Feminino , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Pessoa de Meia-Idade , Plantas Medicinais/microbiologia , Plantas Medicinais/química
18.
Chemosphere ; 359: 142290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723691

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Assuntos
Biotransformação , Retardadores de Chama , Helianthus , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase/metabolismo
19.
Chemosphere ; 359: 142289, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723690

RESUMO

The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.


Assuntos
Arsênio , Bioacumulação , Biotransformação , Ciclídeos , Fígado , Selênio , Poluentes Químicos da Água , Animais , Arsênio/metabolismo , Ciclídeos/metabolismo , Poluentes Químicos da Água/metabolismo , Selênio/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Brânquias/metabolismo , Músculos/metabolismo
20.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738816

RESUMO

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Assuntos
Cabelo , Via de Sinalização Wnt , Animais , Camundongos , Cabelo/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/química , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Biotransformação , Fermentação , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...