Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651405

RESUMO

Genetic diversity is the prerequisite for the success of crop improvement programmes. Keeping in view, the current investigation was undertaken to assess the agro-morphological and molecular diversity involving 36 diverse mid-late and late cauliflower genotypes following α-RBD design during winter season 2021-22. Six morphological descriptors predicted as polymorphic using Shannon diversity index with maximum for leaf margin (0.94). The genotypes grouped into nine clusters based on D2 analysis with four as monogenotypic and gross plant weight (32.38%) revealed maximum contribution towards the genetic diversity. Molecular diversity analysis revealed 2-7 alleles among 36 polymorphic simple sequence repeats (SSR) with average of 4.22. Primer BoESSR492 (0.77) showed maximum polymorphic information content (PIC) with mean of 0.58. SSR analysis revealed two clusters each with two subclusters with a composite pattern of genotype distribution. STRUCTURE analysis showed homogenous mixture with least amount of gene pool introgression within the genotypes. Thus, based on morphological and molecular studies, the diverse genotypes namely, DPCaCMS-1, DPCaf-W4, DPCaf-US, DPCaf-W131W, DPCaf-S121, DPCaf-18, DPCaf-13, DPCaf-29 and DPCaf-CMS5 can be utilized in hybridization to isolate potential transgressive segregants to broaden the genetic base of cauliflower or involve them to exploit heterosis.


Assuntos
Brassica , Brassica/anatomia & histologia , Brassica/genética , Brassica/crescimento & desenvolvimento , Genótipo , Alelos , Vigor Híbrido , Introgressão Genética , Repetições de Microssatélites , Genes de Plantas , Pool Gênico
2.
Theor Appl Genet ; 136(4): 96, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017803

RESUMO

KEY MESSAGE: Genetic mapping of some key plant architectural traits in a vegetable type and an oleiferous B. juncea cross revealed QTL and candidate genes for breeding more productive ideotypes. Brassica juncea (AABB, 2n = 36), commonly called mustard, is an allopolyploid crop of recent origin but contains considerable morphological and genetic variation. An F1-derived doubled haploid population developed from a cross between an Indian oleiferous line, Varuna, and a Chinese stem type vegetable mustard, Tumida showed significant variability for some key plant architectural traits-four stem strength-related traits, stem diameter (Dia), plant height (Plht), branch initiation height (Bih), number of primary branches (Pbr), and days to flowering (Df). Multi-environment QTL analysis identified twenty Stable QTL for the above-mentioned nine plant architectural traits. Though Tumida is ill-adapted to the Indian growing conditions, it was found to contribute favorable alleles in Stable QTL for five architectural traits-press force, Dia, Plht, Bih, and Pbr; these QTL could be used to breed superior ideotypes in the oleiferous mustard lines. A QTL cluster on LG A10 contained Stable QTL for seven architectural traits that included major QTL (phenotypic variance ≥ 10%) for Df and Pbr, with Tumida contributing the trait-enhancing alleles for both. Since early flowering is critical for the cultivation of mustard in the Indian subcontinent, this QTL cannot be used for the improvement of Pbr in the Indian gene pool lines. Conditional QTL analysis for Pbr, however, identified other QTL which could be used for the improvement of Pbr without affecting Df. The Stable QTL intervals were mapped on the genome assemblies of Tumida and Varuna for the identification of candidate genes.


Assuntos
Brassica , Melhoramento Vegetal , Haploidia , Brassica/anatomia & histologia , Brassica/genética , Verduras/genética , Locos de Características Quantitativas , Fenótipo , Caules de Planta , Brotos de Planta , Flores
3.
BMC Plant Biol ; 21(1): 456, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615469

RESUMO

BACKGROUND: Leaf shape is an important agronomic trait in ornamental kale (Brassica oleracea L. var. acephala). Although some leaf shape-related genes have been reported in ornamental kale, the detailed mechanism underlying leaf shape formation is still unclear. Here, we report a lobed-leaf trait in ornamental kale, aiming to analyze its inheritance and identify the strong candidate gene. RESULTS: Genetic analysis of F2 and BC1 populations demonstrate that the lobed-leaf trait in ornamental kale is controlled by a single dominant gene, termed BoLl-1 (Brassica oleracea lobed-leaf). By performing whole-genome resequencing and linkage analyses, the BoLl-1 gene was finely mapped to a 127-kb interval on chromosome C09 flanked by SNP markers SL4 and SL6, with genetic distances of 0.6 cM and 0.6 cM, respectively. Based on annotations of the genes within this interval, Bo9g181710, an orthologous gene of LATE MERISTEM IDENTITY 1 (LMI1) in Arabidopsis, was predicted as the candidate for BoLl-1, and was renamed BoLMI1a. The expression level of BoLMI1a in lobed-leaf parent 18Q2513 was significantly higher compared with unlobed-leaf parent 18Q2515. Sequence analysis of the parental alleles revealed no sequence variations in the coding sequence of BoLMI1a, whereas a 1737-bp deletion, a 92-bp insertion and an SNP were identified within the BoLMI1a promoter region of parent 18Q2513. Verification analyses with BoLMI1a-specific markers corresponding to the promoter variations revealed that the variations were present only in the lobed-leaf ornamental kale inbred lines. CONCLUSIONS: This study identified a lobed-leaf gene BoLMI1a, which was fine-mapped to a 127-kb fragment. Three variations were identified in the promoter region of BoLMI1a. The transcription level of BoLMI1a between the two parents exhibited great difference, providing new insight into the molecular mechanism underlying leaf shape formation in ornamental kale.


Assuntos
Brassica/anatomia & histologia , Brassica/genética , Clonagem Molecular , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
4.
Science ; 373(6551): 192-197, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244409

RESUMO

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Brassica/anatomia & histologia , Brassica/genética , Redes Reguladoras de Genes , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Fractais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
5.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800078

RESUMO

Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.


Assuntos
Brassica/metabolismo , Brassica/efeitos da radiação , Fenóis/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Brassica/anatomia & histologia , Clorofila/química , Clorofila/metabolismo , Flavonoides/metabolismo , Modelos Biológicos , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
6.
Genomics ; 112(3): 2658-2665, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32135298

RESUMO

Ornamental kale is popular because of its colorful leaves and few studies have investigated the mechanism of color changes. In this study, an ornamental kale line (S2309) with three leaf colors was developed. Analysis of the anthocyanin, chlorophyll, and carotenoid contents and RNA-seq were performed on the three leaf color types. There was less chlorophyll in the white leaves and purple leaves than in the green leaves, and the anthocyanin content was greatest in the purple leaves. All the downregulated DEGs related to chlorophyll metabolism were detected only in the S2309_G vs. S2309_W comparison, which indicated that the decrease in chlorophyll content was caused mainly by the inhibition of chlorophyll biosynthesis during the leaf color change from green to white. Moreover, the expression of 19 DEGs involved in the anthocyanin biosynthesis pathway was upregulated. These results provide new insight into the mechanisms underlying the three-color formation.


Assuntos
Brassica/genética , Pigmentos Biológicos/biossíntese , Antocianinas/análise , Antocianinas/biossíntese , Vias Biossintéticas/genética , Brassica/anatomia & histologia , Brassica/química , Brassica/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/biossíntese , Cor , Genes de Plantas , Fenótipo , Pigmentos Biológicos/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
7.
Plant Sci ; 290: 110283, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779912

RESUMO

Plant dwarf mutants generally exhibit delayed growth, delayed development, short internodes, and abnormal leaves and flowers and are ideal materials to explore the molecular mechanism of plant growth and development. In the current study, we first discovered a spontaneous cabbage (Brassica oleracea) dwarf mutant 99-198dw, which exhibits a dwarf stature, wrinkled leaves, non-heading, and substantially reduced self-fertility compared with the wild-type 99-198; however, the underlying molecular mechanism of its dwarfism is unknown. Here, we performed comparative phenotype, transcriptome and phytohormone analyses between 99-198 and 99-198dw. Cytological analysis showed that an increase in cell size, a reduction in cell layers, chloroplast degradation and a reduction in mitochondria were observed in 99-198dw. RNA-Seq showed that a total of 3801 differentially expressed genes (DEGs) were identified, including 2203 upregulated and 1598 downregulated genes in the dwarf mutant. Key genes in stress-resistant pathways were mostly upregulated, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), ethylene (ET), etc., while the DEGs reported to be related to plant height, such as those involved in the gibberellin (GA), brassinolide (BR), indole-3-acetic acid (IAA), and strigolactone (SL) pathways were mostly downregulated. In addition, the DEGs in the cell division pathway were all downregulated, which is consistent with the cytokinesis defects detected by cytological analysis. The changes in the GA4, JA, ET, SA and ABA contents measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) absolute quantification were consistent with the transcriptome analysis. Further hormone treatment tests showed that the exogenous application of GA, BR, 6BA, paclobutrazol (PC), etc. did not rescue the phenotype, implying that the change in phytohormones is due to but not the cause of the dwarf trait. It was speculated that mutation of certain DEG related to cell division or participating in signalling pathway of phytohormones like GA, BR, IAA, and SL were the cause of dwarf. These results are informative for the elucidation of the underlying regulatory network in 99-198dw and enrich our understanding of plant dwarf traits at the molecular level.


Assuntos
Brassica/crescimento & desenvolvimento , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Brassica/anatomia & histologia , Brassica/genética , Brassica/metabolismo , Cromatografia Líquida , Mutação , RNA-Seq , Espectrometria de Massas em Tandem
8.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039584

RESUMO

The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race.


Assuntos
Brassica/química , Borboletas/crescimento & desenvolvimento , Cardamine/química , Glucosinolatos , Herbivoria , Adaptação Biológica , Animais , Brassica/anatomia & histologia , Cardamine/anatomia & histologia , Feminino , Larva/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Especificidade da Espécie
9.
BMC Genomics ; 20(1): 242, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909886

RESUMO

BACKGROUND: Brassica oleracea exhibits extensive phenotypic diversity. As an important trait, petal color varies among different B. oleracea cultivars, enabling the study of the genetic basis of this trait. In a previous study, the gene responsible for petal color in B. oleracea was mapped to a 503-kb region on chromosome 3, but the candidate gene has not yet been identified. RESULTS: In the present study, we report that the candidate gene was further delineated to a 207-kb fragment. BoCCD4, a homolog of the Arabidopsis carotenoid cleavage dioxygenase 4 (CCD4) gene, was selected for evaluation as the candidate gene. Sequence analysis of the YL-1 inbred line revealed three insertions/deletions and 34 single-nucleotide polymorphisms in the coding region of BoCCD4. Functional complementation showed that BoCCD4 from the white-petal inbred line 11-192 can rescue the yellow-petal trait of YL-1. Expression analysis revealed that BoCCD4 is exclusively expressed in petal tissue of white-petal plants, and phylogenetic analysis indicated that CCD4 homologs may share evolutionarily conserved roles in carotenoid metabolism. These findings demonstrate that BoCCD4 is responsible for white/yellow petal color variation in B. oleracea. CONCLUSIONS: This study demonstrated that function loss of BoCCD4, a homolog of Arabidopsis CCD4, is responsible for yellow petal color in B. oleracea.


Assuntos
Brassica/anatomia & histologia , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Dioxigenases/genética , Brassica/genética , Brassica/metabolismo , Cromossomos de Plantas/genética , Dioxigenases/metabolismo , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Distribuição Tecidual
10.
Genes Genomics ; 41(7): 811-829, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900192

RESUMO

BACKGROUND: Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE: This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS: Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS: All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION: An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.


Assuntos
Brassica/genética , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Transcriptoma , Brassica/anatomia & histologia , Endogamia , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Ecotoxicol Environ Saf ; 173: 314-321, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30784794

RESUMO

Excessive chromium (Cr) causes toxicity to plants, while the beneficial effects of selenium (Se) have been verified in plants under various adverse conditions. Under Cr stress, the impacts of exogenous Se on root morphology and metal element uptake were investigated in root of Chinese cabbage by cellular and biochemical approaches. Exogenous Se alleviated Cr-induced irreversible damage to root morphology, plasma membrane integrity and ultrastructure of root tip cells. Compared with Cr treatment alone, exogenous Se reduced root Cr content by 17%. Se supply changed the subcellular distribution of Cr in root, and the concentration of Cr was reduced in the fractions of plastids and mitochondria, while increased in soluble fraction. Besides, exogenous Se counteracted the nutrient elements (Na, Ca, Fe, Mn, Cu and Zn) loss induced by Cr. For plant with Se pretreatment, the increase rate of Cr influx was lower than that of plant without Se pretreatment, particularly in solution containing high concentration (100-400 µmol L-1) of Cr. In addition, higher Km value was observed in plant with Se pretreatment, which indicated a lower Cr affinity than that of plant without Se pretreatment. The results suggest that Se modified root morphology and regulated nutrient elements uptake by root, which might play a combined role in reducing Cr uptake by root, consequently alleviating Cr stress and maintaining plant growth.


Assuntos
Brassica/efeitos dos fármacos , Cromo/efeitos adversos , Raízes de Plantas/efeitos dos fármacos , Selênio/metabolismo , Poluentes do Solo/efeitos adversos , Transporte Biológico , Brassica/anatomia & histologia , Brassica/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Selênio/administração & dosagem
12.
Genome ; 62(4): 253-266, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30807237

RESUMO

Broccoli (Brassica oleracea var. italica L.) is a highly nutritious vegetable that typically forms pure green or purple florets. However, green broccoli florets sometimes accumulate slight purplish pigmentation in response environmental factors, decreasing their market value. In the present study, we aimed to develop molecular markers to distinguish broccoli genotypes as pure green or purplish floret color at the early seedling stage. Anthocyanins are known to be involved in the purple pigmentation in plants. The purplish broccoli lines were shown to accumulate purple pigmentation in the hypocotyls of very young seedlings; therefore, the expression profiles of the structural and regulatory genes of anthocyanin biosynthesis were analyzed in the hypocotyls using qRT-PCR. BoPAL, BoDFR, BoMYB114, BoTT8, BoMYC1.1, BoMYC1.2, and BoTTG1 were identified as putative candidate genes responsible for the purple hypocotyl color. BoTT8 was much more highly expressed in the purple than green hypocotyls; therefore, it was cloned and sequenced from various broccoli lines, revealing SNP and InDel variations between these genotypes. We tested four SNPs (G > A; A > T; G > C; T > G) in the first three exons and a 14-bp InDel (ATATTTATATATAT) in the BoTT8 promoter in 51 broccoli genotypes, and we found these genetic variations could distinguish the green lines, purple lines, and F1 hybrids. These novel molecular markers could be useful in broccoli breeding programs to develop a true green or purple broccoli cultivar.


Assuntos
Antocianinas/biossíntese , Brassica/genética , Hipocótilo/anatomia & histologia , Brassica/anatomia & histologia , Clonagem Molecular , DNA de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Hipocótilo/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
13.
PLoS One ; 13(9): e0204488, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240454

RESUMO

Nitrogen (N) supply, including NO3--N and organic N in the form of amino acids can influence the morphological attributes of plants. For example, amino acids contribute to plant nutrition; however, the effects of exogenous amino acids on NO3--N uptake and root morphology have received little attention. In this study, we evaluated the effects of exogenous glycine (Gly) on root growth and NO3--N uptake in pak choi (Brassica campestris ssp. Chinensis L.). Addition of Gly to NO3--N agar medium or hydroponic solution significantly decreased pak choi seedling root length; these effects of Gly on root morphology were not attributed to the proportion of N supply derived from Gly. When pak choi seedlings were exposed to mixtures of Gly and NO3--N in hydroponic culture, Gly significantly reduced 15NO3--N uptake but significantly increased the number of root tips per unit root length, root activity and 15NO3--N uptake rate per unit root length. In addition, 15N-Gly was taken up into the plants. In contrast to absorbed NO3--N, which was mostly transported to the shoots, a larger proportion of absorbed Gly was retained in the roots. Exogenous Gly enhanced root 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO) activities and ethylene production. The ethylene antagonists aminoethoxyvinylglycine (0.5 µM AVG) and silver nitrate (10 µM AgNO3) partly reversed Gly-induced inhibition of primary root elongation on agar plates and increased the NO3--N uptake rate under hydroponic conditions, indicating exogenous Gly exerts these effects at least partly by enhancing ethylene production in roots. These findings suggest Gly substantially affects root morphology and N uptake and provide new information on the specific responses elicited by organic N sources.


Assuntos
Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Glicina , Nitratos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Ágar , Brassica/anatomia & histologia , Brassica/efeitos dos fármacos , Etilenos/metabolismo , Glicina/metabolismo , Hidroponia , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
14.
Biochem Biophys Res Commun ; 506(3): 755-764, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29673595

RESUMO

Bok choy is an important Brassica vegetable which is also known for its wide range of cultivars that differ in their appearance, leaf color, size and shape. For the purpose to investigate the effect of these phenotypic differences on their lipid composition, seven morphotypes of NHCC (Suzhouqing, Aijaohuang, Wutacai, Yellowrose, Ziluolan, Xiangqingcai and Zicaitai) were selected for this study. For this reason, extensive metabolic approach was adopted which was mainly focused on lipidomics. The overall metabolic position of lipids was determined and the isolated lipid compounds were characterized on the basis of their lipid classes. Moreover, discriminative analysis was applied to monitor the distribution pattern of lipid in different cultivars. Aijiaohuang was the leading cultivar which contained highest lipid levels, whereas least proportion was found in Zicaitai. We proposed that leaf color might have an effect on the lipid composition such as purple cultivars were dominated in glycerophopholipids, light green in fatty acids and dark green were rich in glycerolipids. The level of metabolites differed greatly among different genotypes. Lipid-metabolite interactions revealed the positive correlation of lipids with flavonoid and hydroxycinnamoyl derivatives, whereas negative correlation was noticed in case of phenylamines. This is the first comprehensive study based on lipidomics in order to evaluate the substantial impact of various phenotypes on the metabolic composition of NHCC.


Assuntos
Brassica/anatomia & histologia , Brassica/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Metaboloma , Brassica/genética , Genótipo , Metabolômica , Folhas de Planta/metabolismo
15.
Sci Rep ; 7(1): 15517, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138433

RESUMO

Flowering Chinese cabbage is a stalk vegetable whose quality and yield are directly related to stalk development. However, no comprehensive investigations on stalk development have been performed. To address this issue, the present study used RNA sequencing to investigate transcriptional regulation at three key stages (seedling, bolting, and flowering) of stalk development in flowering Chinese cabbage. Anatomical analysis revealed that cell division was the main mode of stalk thickening and elongation at all key stages. Among the 35,327 genes expressed in shoot apices, 34,448 were annotated and 879 were identified as novel transcripts. We identified 11,514 differentially expressed genes (DEGs) among the three stages of stalk development. Functional analysis revealed that these DEGs were significantly enriched in 'ribosome' and 'plant hormone signal transduction' pathways and were involved in hormone signal transduction, cell cycle progression, and the regulation of flowering time. The roles of these genes in stalk development were explored, and a putative gene-regulation network for the stalk flowering time was established. These findings provide insight into the molecular mechanisms of stalk development in flowering Chinese cabbage that provides a new theoretical basis for stalk vegetable breeding.


Assuntos
Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , RNA Mensageiro/genética , Transcriptoma , Brassica/anatomia & histologia , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Divisão Celular , China , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Células Vegetais , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA Mensageiro/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais
16.
PLoS One ; 12(9): e0185429, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28937992

RESUMO

A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.


Assuntos
Brassica/genética , Sistemas CRISPR-Cas , Engenharia Genética/métodos , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Agrobacterium tumefaciens , Brassica/anatomia & histologia , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Perfilação da Expressão Gênica , Vetores Genéticos , Degradação do RNAm Mediada por Códon sem Sentido , Tamanho do Órgão , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
17.
Food Res Int ; 96: 191-197, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528099

RESUMO

Many quality attributes of food products are influenced by the water status and the microstructure. Low-field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods are applied to non-destructively monitor the water status and structure of food. The aim of this study is to investigate the water status and distribution inside broccoli tissues and the effects of hot-air drying on the water status by using NMR and MRI methods. Transverse relaxation times (T2) provide the information of water status and water distribution. Results show that three water fractions with different T2 relaxation times were detected inside broccoli, which corresponded to different cell compartments. Proton weighted imaging could monitor the spatial distribution of water. Image analysis indicates that the water distribution inside broccoli was heterogeneous and the water content reduced from the stalk to the buds. During hot-air drying experiments, different drying kinetics were observed in the florets and stalks, which were related to their different structures. In addition, a detection limit of the moisture content was calculated for LF-NMR (about 11.35%). The results of this study show that the low-field NMR and MRI methods can precisely provide the quantitative information of water status inside food materials, and can be used to investigate the effects of food processing on product quality. The method provided in this study can be used to monitor changes of water status and distribution in a sample non-destructively during drying process.


Assuntos
Brassica/metabolismo , Dessecação/métodos , Temperatura Alta , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Verduras/metabolismo , Água/metabolismo , Brassica/anatomia & histologia , Cinética , Verduras/anatomia & histologia
18.
Plant Physiol ; 174(2): 700-716, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28184011

RESUMO

Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.


Assuntos
Brassica/anatomia & histologia , Brassica/imunologia , Doenças das Plantas/imunologia , Xanthomonas campestris/patogenicidade , Ácido Abscísico/farmacologia , Arabidopsis/anatomia & histologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassica/microbiologia , Interações Hospedeiro-Patógeno , Folhas de Planta/microbiologia , Estômatos de Plantas/anatomia & histologia , Plantas Geneticamente Modificadas , Xanthomonas campestris/genética
19.
Plant Biol (Stuttg) ; 19(3): 475-483, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28075047

RESUMO

Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation. We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole-plant photosynthesis, and ultimately in aboveground biomass. Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole-plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant-level C gain, and ultimately to larger aboveground biomass. In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf-level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.


Assuntos
Produtos Agrícolas/fisiologia , Componentes Aéreos da Planta/fisiologia , Beta vulgaris/anatomia & histologia , Beta vulgaris/fisiologia , Biomassa , Brassica/anatomia & histologia , Brassica/fisiologia , Produtos Agrícolas/anatomia & histologia , Helianthus/anatomia & histologia , Helianthus/fisiologia , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia , Componentes Aéreos da Planta/anatomia & histologia , Triticum/anatomia & histologia , Triticum/fisiologia , Zea mays/anatomia & histologia , Zea mays/fisiologia
20.
BMC Plant Biol ; 17(1): 3, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056801

RESUMO

BACKGROUND: Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. RESULTS: Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. CONCLUSIONS: Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.


Assuntos
Brassica/genética , Evolução Molecular , Folhas de Planta/anatomia & histologia , Poliploidia , Brassica/anatomia & histologia , Brassica/crescimento & desenvolvimento , Brassica/fisiologia , Diploide , Genoma de Planta , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...