Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 2385, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539614

RESUMO

A potential strategy to cure HIV-1 infection is to use latency reversing agents (LRAs) to eliminate latent reservoirs established in resting CD4+ T (rCD4+) cells. As no drug has been shown to be completely effective, finding new drugs and combinations are of increasing importance. We studied the effect of Maraviroc (MVC), a CCR5 antagonist that activates NF-κB, on HIV-1 replication from latency. HIV-1-latency models based on CCL19 or IL7 treatment, before HIV-1 infection were used. Latently infected primary rCD4+ or central memory T cells were stimulated with MVC alone or in combination with Bryostatin-1, a PKC agonist known to reverse HIV-1 latency. MVC 5 µM and 0.31 µM were chosen for further studies although other concentrations of MVC also increased HIV-1 replication. MVC was as efficient as Bryostatin-1 in reactivating X4 and R5-tropic HIV-1. However, the combination of MVC and Bryostatin-1 was antagonistic, probably because Bryostatin-1 reduced CCR5 expression levels. Although HIV-1 reactivation had the same tendency in both latency models, statistical significance was only achieved in IL7-treated cells. These data suggest that MVC should be regarded as a new LRA with potency similar as Bryostatin-1. Further studies are required to describe the synergistic effect of MVC with other LRAs.


Assuntos
Briostatinas/farmacologia , Antagonistas dos Receptores CCR5/farmacologia , HIV-1/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Maraviroc/farmacologia , Latência Viral/efeitos dos fármacos , Briostatinas/antagonistas & inibidores , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL19/farmacologia , Regulação da Expressão Gênica , HIV-1/genética , HIV-1/metabolismo , Humanos , Interleucina-7/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
2.
Biochem Pharmacol ; 120: 15-21, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664855

RESUMO

Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway.


Assuntos
Antivirais/farmacologia , Briostatinas/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Desenho de Fármacos , Proteína Quinase C/metabolismo , Proteínas Virais/metabolismo , Acetilação , Animais , Antivirais/agonistas , Antivirais/antagonistas & inibidores , Antivirais/química , Briostatinas/agonistas , Briostatinas/antagonistas & inibidores , Briostatinas/química , Carbazóis/química , Carbazóis/farmacologia , Linhagem Celular , Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Sinergismo Farmacológico , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Metilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirróis/química , Pirróis/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Vírus da Floresta de Semliki/efeitos dos fármacos , Vírus da Floresta de Semliki/crescimento & desenvolvimento , Vírus da Floresta de Semliki/metabolismo , Sindbis virus/efeitos dos fármacos , Sindbis virus/crescimento & desenvolvimento , Sindbis virus/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...