Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891551

RESUMO

Many drugs have been evaluated to reactivate HIV-1 from cellular reservoirs, but the off-target effects of these latency reversal agents (LRA) remain poorly defined. Transposable elements (TEs) are reactivated during HIV-1 infection, but studies of potential off-target drug effects on TE expression have been limited. We analyzed the differential expression of TEs induced by canonical and non-canonical NF-κB signaling. We evaluated the effect of PKC agonists (Bryostatin and Ingenol B) on the expression of TEs in memory CD4+ T cells. Ingenol B induced 38 differentially expressed TEs (17 HERV (45%) and 21 L1 (55%)). Interestingly, TE expression in effector memory CD4+ T cells was more affected by Bryostatin compared to other memory T-cell subsets, with 121 (107 upregulated and 14 downregulated) differentially expressed (DE) TEs. Of these, 31% (n = 37) were HERVs, and 69% (n = 84) were LINE-1 (L1). AZD5582 induced 753 DE TEs (406 HERV (54%) and 347 L1 (46%)). Together, our findings show that canonical and non-canonical NF-κB signaling activation leads to retroelement expressions as an off-target effect. Furthermore, our data highlights the importance of exploring the interaction between LRAs and the expression of retroelements in the context of HIV-1 eradication strategies.


Assuntos
Elementos de DNA Transponíveis , Infecções por HIV , Soropositividade para HIV , NF-kappa B , Latência Viral , Briostatinas/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Diterpenos/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1 , Humanos , NF-kappa B/metabolismo , Ativação Viral
2.
Sci Rep ; 10(1): 18058, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093534

RESUMO

Fragile X syndrome (FXS), an X-chromosome linked intellectual disability, is the leading monogenetic cause of autism spectrum disorder (ASD), a neurodevelopmental condition that currently has no specific drug treatment. Building upon the demonstrated therapeutic effects on spatial memory of bryostatin-1, a relatively specific activator of protein kinase C (PKC)ε, (also of PKCα) on impaired synaptic plasticity/maturation and spatial learning and memory in FXS mice, we investigated whether bryostatin-1 might affect the autistic phenotypes and other behaviors, including open field activity, activities of daily living (nesting and marble burying), at the effective therapeutic dose for spatial memory deficits. Further evaluation included other non-spatial learning and memory tasks. Interestingly, a short period of treatment (5 weeks) only produced very limited or no therapeutic effects on the autistic and cognitive phenotypes in the Fmr1 KO2 mice, while a longer treatment (13 weeks) with the same dose of bryostatin-1 effectively rescued the autistic and non-spatial learning deficit cognitive phenotypes. It is possible that longer-term treatment would result in further improvement in these fragile X phenotypes. This effect is clearly different from other treatment strategies tested to date, in that the drug shows little acute effect, but strong long-term effects. It also shows no evidence of tolerance, which has been a problem with other drug classes (mGluR5 antagonists, GABA-A and -B agonists). The results strongly suggest that, at appropriate dosing and therapeutic period, chronic bryostatin-1 may have great therapeutic value for both ASD and FXS.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Briostatinas/administração & dosagem , Briostatinas/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/terapia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Animais , Comportamento Animal , Briostatinas/farmacologia , Aprendizagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteína Quinase C/metabolismo , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA