Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 76(11): 2787-2794, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329431

RESUMO

OBJECTIVES: To describe a novel chromosomal aminoglycoside phosphotransferase named APH(3')-IId identified in an MDR Brucella intermedia ZJ499 isolate from a cancer patient. METHODS: Species identity was determined by PCR and MALDI-TOF MS analysis. WGS was performed to determine the genetic elements conferring antimicrobial resistance. Gene cloning, transcriptional analysis and targeted gene deletion, as well as protein purification and kinetic analysis, were performed to investigate the mechanism of resistance. RESULTS: APH(3')-IId consists of 266 amino acids and shares the highest identity (48.25%) with the previously known APH(3')-IIb. Expression of aph(3')-IId in Escherichia coli decreased susceptibility to kanamycin, neomycin, paromomycin and ribostamycin. The aph(3')-IId gene in ZJ499 was transcriptionally active under laboratory conditions and the relative abundance of this transcript was unaffected by treatment with the above four antibiotics. However, deletion of aph(3')-IId in ZJ499 results in decreased MICs of these drugs. The purified APH(3')-IId showed phosphotransferase activity against kanamycin, neomycin, paromomycin and ribostamycin, with catalytic efficiencies (kcat/Km) ranging from ∼105 to 107 M-1 s-1. Genetic environment and comparative genomic analyses suggested that aph(3')-IId is probably a ubiquitous gene in Brucella, with no mobile genetic elements detected in its surrounding region. CONCLUSIONS: APH(3')-IId is a novel chromosomal aminoglycoside phosphotransferase and plays an important role in the resistance of B. intermedia ZJ499 to kanamycin, neomycin, paromomycin and ribostamycin. To the best of our knowledge, APH(3')-IId represents the fourth characterized example of an APH(3')-II enzyme.


Assuntos
Aminoglicosídeos , Brucella , Farmacorresistência Bacteriana Múltipla , Canamicina Quinase , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Brucella/efeitos dos fármacos , Brucella/enzimologia , Humanos , Canamicina/farmacologia , Canamicina Quinase/genética , Cinética
2.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32518090

RESUMO

BACKGROUND: Natural killer and cytotoxic CD8+ T cells are major players during antitumor immunity. They express NKG2D, an activating receptor that promotes tumor elimination through recognition of the MHC class I chain-related proteins A and B (MICA and MICB). Both molecules are overexpressed on a great variety of tumors from different tissues, making them attractive targets for immunotherapy. However, tumors shed MICA and MICB, and the soluble forms of both (sMICA and sMICB) mediate tumor-immune escape. Some reports indicate that anti-MICA antibodies (Ab) can promote the restoration of antitumor immunity through the induction of direct antitumor effects (antibody-dependent cell-mediated cytotoxicity, ADCC) and scavenging of sMICA. Therefore, we reasoned that an active induction of anti-MICA Ab with an immunogenic protein might represent a novel therapeutic and prophylactic alternative to restore antitumor immunity. METHODS: We generated a highly immunogenic chimeric protein (BLS-MICA) consisting of human MICA fused to the lumazine synthase from Brucella spp (BLS) and used it to generate anti-MICA polyclonal Ab (pAb) and to investigate if these anti-MICA Ab can reinstate antitumor immunity in mice using two different mouse tumors engineered to express MICA. We also explored the underlying mechanisms of this expected therapeutic effect. RESULTS: Immunization with BLS-MICA and administration of anti-MICA pAb elicited by BLS-MICA significantly delayed the growth of MICA-expressing mouse tumors but not of control tumors. The therapeutic effect of immunization with BLS-MICA included scavenging of sMICA and the anti-MICA Ab-mediated ADCC, promoting heightened intratumoral M1/proinflammatory macrophage and antigen-experienced CD8+ T cell recruitment. CONCLUSIONS: Immunization with the chimeric protein BLS-MICA constitutes a useful way to actively induce therapeutic anti-MICA pAb that resulted in a reprogramming of the antitumor immune response towards an antitumoral/proinflammatory phenotype. Hence, the BLS-MICA chimeric protein constitutes a novel antitumor vaccine of potential application in patients with MICA-expressing tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfoma/imunologia , Proteínas Recombinantes de Fusão/imunologia , Neoplasias da Bexiga Urinária/imunologia , Animais , Brucella/enzimologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Linfoma/patologia , Linfoma/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
3.
Virulence ; 10(1): 868-878, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31635539

RESUMO

Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Brucella/genética , Brucella/patogenicidade , Brucelose/microbiologia , Glicosiltransferases/genética , Polissacarídeos Bacterianos/biossíntese , Animais , Brucella/enzimologia , Modelos Animais de Doenças , Feminino , Genótipo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Virulência
4.
J Bacteriol ; 201(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481543

RESUMO

Brucella spp. are intracellular pathogens that cause a disease known as brucellosis. Though the genus is highly monomorphic at the genetic level, species have animal host preferences and some defining physiologic characteristics. Of note is the requirement for CO2 supplementation to cultivate particular species, which confounded early efforts to isolate B. abortus from diseased cattle. Differences in the capacity of Brucella species to assimilate CO2 are determined by mutations in the carbonic anhydrase gene, bcaA Ancestral single-nucleotide insertions in bcaA have resulted in frameshifted pseudogenes in B. abortus and B. ovis lineages, which underlie their inability to grow under the low CO2 tension of a standard atmosphere. Incubation of wild-type B. ovis in air selects for mutations that "rescue" a functional bcaA reading frame, which enables growth under low CO2 and enhances the growth rate under high CO2 Accordingly, we show that heterologous expression of functional Escherichia coli carbonic anhydrases enables B. ovis growth in air. Growth of B. ovis is acutely sensitive to a reduction in CO2 tension, while frame-rescued B. ovis mutants are insensitive to CO2 shifts. B. ovis initiates a gene expression program upon CO2 downshift that resembles the stringent response and results in transcriptional activation of its type IV secretion system. Our study provides evidence that loss-of-function insertion mutations in bcaA sensitize the response of B. ovis and B. abortus to reduced CO2 tension relative to that of other Brucella lineages. CO2-dependent starvation and virulence gene expression programs in these species may influence persistence or transmission in natural hosts.IMPORTANCEBrucella spp. are highly related, but they exhibit differences in animal host preference that must be determined by genome sequence differences. B. ovis and the majority of B. abortus strains require high CO2 tension to be cultivated in vitro and harbor conserved insertional mutations in the carbonic anhydrase gene, bcaA, which underlie this trait. Mutants that grow in a standard atmosphere, first reported nearly a century ago, are easily selected in the laboratory. These mutants harbor varied indel polymorphisms in bcaA that restore its consensus reading frame and rescue its function. Loss of bcaA function has evolved independently in the B. ovis and B. abortus lineages and results in a dramatically increased sensitivity to CO2 limitation.


Assuntos
Brucella/genética , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Pseudogenes/genética , Alelos , Brucella/enzimologia , Brucella/metabolismo , Brucella abortus/enzimologia , Brucella abortus/genética , Brucella abortus/metabolismo , Brucella ovis/enzimologia , Brucella ovis/genética , Brucella ovis/metabolismo , Anidrases Carbônicas/metabolismo , DNA Bacteriano/genética , Mutação da Fase de Leitura/genética , Mutação com Perda de Função/genética , Pseudogenes/fisiologia
5.
Microb Pathog ; 130: 112-119, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30797816

RESUMO

The Brucella spp encounter stressful environment inside their host cells. The Lon protein is an important protease related to cellular protein degradation and resistance to stress in Brucella. However, the molecular mechanism between Lon protein and stress response was still unknown. In this study, it was found that the lon mutant exhibited obvious growth defect in TSB medium, compared with its parent strain. In addition, our results indicated that Lon protein was involved in resistance to various stress conditions and all the ß-lactam antibiotics tested. Although deletion of this protease did not affect Brucella virulence in macrophage, the mutant strain was significantly attenuated in mice infection model at 1 week post infection, and the expression level of several cytokine genes was significantly changed in vivo. To gain insight into the genetic basis for the distinctive phenotypic properties exhibited by the lon mutant strain, RNA-seq was performed, and the result showed that various genes involved in stress response, quorum sensing and transcriptional regulation were significantly altered in Δlon strain. Overall, these studies have preliminary uncovered the molecular mechanism between Lon protease, stress response and bacterial virulence.


Assuntos
Brucella/enzimologia , Brucella/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Protease La/metabolismo , Estresse Fisiológico , Fatores de Virulência/metabolismo , Animais , Brucella/genética , Brucelose/microbiologia , Brucelose/patologia , Meios de Cultura/química , Modelos Animais de Doenças , Deleção de Genes , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Protease La/genética , Análise de Sequência de RNA , Virulência , Fatores de Virulência/genética
6.
J Biotechnol ; 293: 17-23, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30690101

RESUMO

Vaccination is as one of the most beneficial biopharmaceutical interventions against pathogens due to its ability to induce adaptive immunity through targeted activation of the immune system. Each vaccine needs a tailor-made set of tests in order to monitor its quality throughout the development and manufacturing. The analysis of the conformational state of protein nanoparticles is one of the key steps in vaccine quality control. The enzyme lumazine synthase from Brucella spp. (BLS) acts as a potent oral and systemic immunogen. BLS has been used as a carrier of foreign peptides, protein domains and whole proteins, serving as a versatile platform for vaccine engineering purposes. Here, we show the generation and characterization of four families of nanobodies (Nbs) which only recognize BLS in its native conformational state and that bind to its active site. The present results support the use of conformation-sensitive Nbs as molecular probes during the development and production of vaccines based on the BLS platform. Finally, we propose Nbs as useful molecular tools targeting other protein scaffolds with potential applications in nano-and biotechnology.


Assuntos
Complexos Multienzimáticos , Anticorpos de Domínio Único , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Brucella/enzimologia , Escherichia coli/genética , Células HEK293 , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/fisiologia , Conformação Proteica , Dobramento de Proteína , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/fisiologia , Vacinas de Subunidades Antigênicas
7.
J Biotechnol ; 266: 20-26, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29217400

RESUMO

As the important chiral building block of levetiracetam, the synthesis of (S)-2-aminobutanamide has attracted a great deal of attention. The d-aminopeptidase catalyzed kinetic resolution of 2-aminobutanamide was demonstrated as an effective strategy for (S)-2-aminobutanamide production. In this study, a novel d-aminopeptidase from Brucella sp. (Bs-Dap) was screened and systematically characterized. The enzyme exhibited maximum activity at 45°C, pH 8.0 and it showed relatively low Km value toward 2-aminobutanamide, indicating its high affinity to the substrate. Kinetic resolution of 300g/L 2-aminobutanamide by recombinant Escherichia coli whole cells (4g/L wet cell weight) resulted in 50% conversion and >99% e.e. within 80min. The catalytic properties of Bs-Dap demonstrated its great potential for industrial production of (S)-2-aminobutanamide.


Assuntos
Amidas/síntese química , Aminopeptidases/química , Proteínas de Bactérias/química , Brucella/enzimologia , Catálise
8.
Protein Sci ; 26(5): 1049-1059, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28257593

RESUMO

Aiming to combine the flexibility of Brucella lumazine synthase (BLS) to adapt different protein domains in a decameric structure and the capacity of BLS and flagellin to enhance the immunogenicity of peptides that are linked to their structure, we generated a chimeric protein (BLS-FliC131) by fusing flagellin from Salmonella in the N-termini of BLS. The obtained protein was recognized by anti-flagellin and anti-BLS antibodies, keeping the oligomerization capacity of BLS, without affecting the folding of the monomeric protein components determined by circular dichroism. Furthermore, the thermal stability of each fusion partner is conserved, indicating that the interactions that participate in its folding are not affected by the genetic fusion. Besides, either in vitro or in vivo using TLR5-deficient animals we could determine that BLS-FliC131 retains the capacity of triggering TLR5. The humoral response against BLS elicited by BLS-FliC131 was stronger than the one elicited by equimolar amounts of BLS + FliC. Since BLS scaffold allows the generation of hetero-decameric structures, we expect that flagellin oligomerization on this protein scaffold will generate a new vaccine platform with enhanced capacity to activate immune responses.


Assuntos
Brucella , Flagelina , Complexos Multienzimáticos , Proteínas Recombinantes de Fusão , Salmonella typhimurium , Animais , Brucella/enzimologia , Brucella/genética , Brucella/imunologia , Células CACO-2 , Feminino , Flagelina/biossíntese , Flagelina/genética , Flagelina/imunologia , Humanos , Imunidade Humoral , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
9.
Vaccine ; 34(39): 4732-4737, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27527816

RESUMO

Shiga toxin producing Escherichia coli (STEC) are bacterial pathogens involved in food-borne diseases. Shiga toxin (Stx) is the main virulence factor of STEC and is responsible for systemic complications including Hemolytic Uremic Syndrome (HUS). It has been previously demonstrated that Shiga toxin type 2 (Stx2) induces pregnancy loss in rats in early stage of pregnancy. The main purpose of this study was to determine if an active immunization prevents Stx2 mediated pregnancy loss and confers passive protective immunity to the offspring. For that purpose Sprague Dawley female rats were immunized with the chimera based on the enzyme lumazine synthase from Brucella spp. (BLS) and the B subunit of Shiga toxin 2 (Stx2B) named BLS-Stx2B. After immunization females were mated with males. At day 8 of gestation, dams were challenged intraperitoneally with a sublethal and abortifacient dose of Stx2. The immunization induced high anti-Stx2B-specific antibody titers in sera and most important, prevented pregnancy loss. Pups born and breastfeed by immunized dams had high anti-Stx2B-specific antibody titers in sera. Cross-fostering experiments indicated that passive protective immunity against Stx2 was transmitted through lactation. These results indicate that immunization of adult female rats with BLS-Stx2B prevents Stx2-induced pregnancy loss and confers anti Stx2 protective immunity to the offspring.


Assuntos
Aborto Espontâneo/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/imunologia , Imunidade Materno-Adquirida , Toxina Shiga II/imunologia , Aborto Espontâneo/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Brucella/enzimologia , Feminino , Doenças Transmitidas por Alimentos/prevenção & controle , Síndrome Hemolítico-Urêmica/prevenção & controle , Masculino , Complexos Multienzimáticos/imunologia , Gravidez , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/imunologia , Escherichia coli Shiga Toxigênica
10.
J Mol Biol ; 428(6): 1165-1179, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-26851072

RESUMO

In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.


Assuntos
Brucella/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Cristalografia por Raios X , Análise Mutacional de DNA , Histidina Quinase , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Multimerização Proteica
11.
Gene ; 579(2): 183-92, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26778206

RESUMO

Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella.


Assuntos
Brucella/enzimologia , Conformação de Ácido Nucleico , Estabilidade de RNA/genética , Ribonuclease III/genética , Sequência de Aminoácidos/genética , Brucella/patogenicidade , Clonagem Molecular , Escherichia coli/enzimologia , Ribonuclease III/química , Ribonuclease III/metabolismo , Transdução de Sinais/genética , Especificidade por Substrato
12.
Genet Mol Res ; 14(4): 13084-95, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26535621

RESUMO

Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Brucella/enzimologia , Brucella/imunologia , Imunomodulação , Complexos Multienzimáticos/metabolismo , Sequência de Aminoácidos , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Brucella/genética , DNA Complementar , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Proteínas Recombinantes
13.
PLoS One ; 10(5): e0126827, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973756

RESUMO

Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8(+) T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.


Assuntos
Brucella/enzimologia , Complexos Multienzimáticos/metabolismo , Receptor 4 Toll-Like/genética , Animais , Apoptose , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Ovalbumina/genética , Ovalbumina/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Taxa de Sobrevida , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/metabolismo , Transplante Homólogo
14.
Appl Environ Microbiol ; 81(2): 578-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381237

RESUMO

Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.


Assuntos
Ácidos/metabolismo , Ácidos/toxicidade , Brucella/efeitos dos fármacos , Brucella/enzimologia , Tolerância a Medicamentos , Glutamato Descarboxilase/metabolismo , Animais , Brucella/genética , Brucella/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Ochrobactrum/efeitos dos fármacos , Ochrobactrum/enzimologia , Rana catesbeiana
15.
J Infect Dis ; 206(9): 1424-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930809

RESUMO

BACKGROUND: Genome analysis indicated that the new species Brucella microti possesses a potentially functional glutamate decarboxylase (GAD) system involved in extreme acid resistance in several foodborne bacteria. The contribution of this system in adaptation of B. microti to an acidic environment, including the intracellular vacuole and stomach, was investigated. RESULTS: B. microti was GAD positive and able to export its product, γ-aminobutyrate, to the extracellular medium. The resistance of B. microti to acid stress (pH 2.5) was glutamate dependent. Mutants affected in the GAD system lost this resistance, demonstrating its direct involvement in survival under these conditions. The reciprocal heterologous complementation of mutants with the GAD systems of Escherichia coli or B. microti confirmed conserved functions in both bacterial species. A gad mutant was not attenuated during infection of macrophages, where Brucella resides in an acidified vacuole at a pH of 4-4.5 during the early phase of macrophage infection, but GAD contributed to the survival of B. microti in a murine model following oral infection. CONCLUSIONS: This work provides first evidence that the GAD system might play an essential role in the resistance of an environment-borne, pathogenic Brucella species to extreme acid shock and during passage through the host stomach following oral infection.


Assuntos
Ácidos/metabolismo , Brucella/enzimologia , Brucella/patogenicidade , Brucelose/microbiologia , Glutamato Descarboxilase/metabolismo , Estresse Fisiológico , Fatores de Virulência/metabolismo , Ácidos/toxicidade , Animais , Brucella/genética , Modelos Animais de Doenças , Escherichia coli/enzimologia , Escherichia coli/genética , Feminino , Deleção de Genes , Teste de Complementação Genética , Glutamato Descarboxilase/genética , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência/genética
16.
J Bacteriol ; 194(8): 1860-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328663

RESUMO

The brucellae are Gram-negative pathogens that cause brucellosis, a zoonosis of worldwide importance. The genus Brucella includes smooth and rough species that differ in that they carry smooth and rough lipopolysaccharides, respectively. Brucella abortus, B. melitensis, and B. suis are typical smooth species. However, these smooth brucellae dissociate into rough mutants devoid of the lipopolysaccharide O-polysaccharide, a major antigen and a virulence determinant encoded in regions wbo (included in genomic island-2) and wbk. We demonstrate here the occurrence of spontaneous recombination events in those three Brucella species leading to the deletion of a 5.5-kb fragment carrying the wbkA glycosyltranferase gene and to the appearance of rough mutants. Analysis of the recombination intermediates suggested homologous recombination between the ISBm1 insertion sequences flanking wbkA as the mechanism generating the deletion. Excision of wbkA was reduced but not abrogated in a recA-deficient mutant, showing the existence of both RecA-dependent and -independent processes. Although the involvement of the ISBm1 copies flanking wbkA suggested a transpositional event, the predicted transpositional joint could not be detected. This absence of detectable transposition was consistent with the presence of polymorphism in the inverted repeats of one of the ISBm1 copies. The spontaneous excision of wbkA represents a novel dissociation mechanism of smooth brucellae that adds to the previously described excision of genomic island-2. This ISBm1-mediated wbkA excision and the different %GC levels of the excised fragment and of other wbk genes suggest that the Brucella wbk locus is the result of at least two horizontal acquisition events.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella/enzimologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicosiltransferases/metabolismo , Antígenos de Bactérias , Proteínas de Bactérias/genética , Brucella/citologia , Brucella/genética , Brucella/metabolismo , Cromossomos Bacterianos , Clonagem Molecular , DNA Bacteriano/química , Ilhas Genômicas , Glicosiltransferases/genética , Dados de Sequência Molecular , Recombinação Genética
17.
Proteins ; 79(4): 1079-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21246631

RESUMO

One of the most remarkable characteristics of Brucella lumazine synthase (BLS) is its versatility to undergo reversible dissociation and reassociation as a polymeric scaffold. We have proposed a mechanism of dissociation and unfolding of BLS. Using static light scattering (SLS) analysis, we were able to demonstrate that the decameric assembly dissociates into two different conditions [pH 5 or 2M guanidinium chloride (GdnHCl) pH 7] forming stable folded pentamers. The transition from folded pentamers to unfolded monomers by GdnHCl denaturation is highly cooperative and can be measured by different spectroscopic techniques. In this work, we show the successful insertion of an intrinsic probe to study in more detail the equilibria described in previous publications. For that purpose, we performed single-point mutations of Phe residues 121 and 127, located at the pentamer-pentamer and monomer-monomer interface, respectively, to Trp residues. These mutations produced only a marginal perturbation of the BLS structure. We analyzed the unfolding and stability of the mutants through different techniques: far-and near-UV CD, SLS, dynamic light scattering, and fluorescence spectroscopy. The introduced intrinsic probe could be used to gain insights into the detailed folding and assembly mechanism of this protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mutação Puntual , Algoritmos , Proteínas de Bactérias/genética , Brucella/enzimologia , Guanidina , Concentração de Íons de Hidrogênio , Luz , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Análise Espectral , Termodinâmica , Triptofano
18.
PLoS One ; 5(11): e14112, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21124845

RESUMO

Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD), a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli ß-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.


Assuntos
Proteínas de Bactérias/genética , Brucella/genética , Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Superóxido Dismutase/genética , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Brucella/enzimologia , Brucella abortus/enzimologia , Brucella abortus/genética , Brucelose/microbiologia , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Teste de Complementação Genética , Fígado/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutagênese Insercional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Baço/microbiologia , Superóxido Dismutase/metabolismo
19.
BMC Microbiol ; 10: 269, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20969797

RESUMO

BACKGROUND: A commercial biotyping system (Taxa Profile™, Merlin Diagnostika) testing the metabolization of various substrates by bacteria was used to determine if a set of phenotypic features will allow the identification of members of the genus Brucella and their differentiation into species and biovars. RESULTS: A total of 191 different amines, amides, amino acids, other organic acids and heterocyclic and aromatic substrates (Taxa Profile™ A), 191 different mono-, di-, tri- and polysaccharides and sugar derivates (Taxa Profile™ C) and 95 amino peptidase- and protease-reactions, 76 glycosidase-, phosphatase- and other esterase-reactions, and 17 classic reactions (Taxa Profile™ E) were tested with the 23 reference strains representing the currently known species and biovars of Brucella and a collection of 60 field isolates. Based on specific and stable reactions a 96-well "Brucella identification and typing" plate (Micronaut™) was designed and re-tested in 113 Brucella isolates and a couple of closely related bacteria.Brucella species and biovars revealed characteristic metabolic profiles and each strain showed an individual pattern. Due to their typical metabolic profiles a differentiation of Brucella isolates to the species level could be achieved. The separation of B. canis from B. suis bv 3, however, failed. At the biovar level, B. abortus bv 4, 5, 7 and B. suis bv 1-5 could be discriminated with a specificity of 100%. B. melitensis isolates clustered in a very homogenous group and could not be resolved according to their assigned biovars. CONCLUSIONS: The comprehensive testing of metabolic activity allows cluster analysis within the genus Brucella. The biotyping system developed for the identification of Brucella and differentiation of its species and biovars may replace or at least complement time-consuming tube testing especially in case of atypical strains. An easy to handle identification software facilitates the applicability of the Micronaut™ system for microbiology laboratories.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Brucella/isolamento & purificação , Brucella/metabolismo , Brucelose/microbiologia , Brucelose/veterinária , Doenças dos Bovinos/microbiologia , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana/instrumentação , Brucella/classificação , Brucella/enzimologia , Metabolismo dos Carboidratos , Bovinos , Humanos , Dados de Sequência Molecular , Filogenia
20.
Methods Enzymol ; 471: 125-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20946846

RESUMO

Bacteria rely on two-component signaling systems in their adaptive responses to environmental changes. Typically, the two-component system consists of a sensory histidine kinase that signals by transferring a phosphoryl group to a secondary response regulator that ultimately relays the signal to the cell. Some of these sensors use PAS (Per-Arnt-Sin) domains. A new member of the PAS super family is the LOV (light, oxygen, voltage) domain, a 10-kDa flavoprotein that functions as a light-sensory module in plant, algal, fungal, and bacterial blue-light receptors. Putative LOV domains have been identified in the genomes of many higher and lower eukaryotes, plants, eubacteria, archaebacteria, and particularly in genes coding for histidine kinases (LOV-histidine kinases, LOV-HKs) of plant and animal pathogenic bacteria, including Brucella. We describe here biochemical, photochemical, and biophysical methodology to purify these enzymes and to characterize their light-activation process.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Brucella/enzimologia , Brucella/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Histidina Quinase , Fotoquímica , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...