Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.621
Filtrar
1.
PLoS One ; 19(7): e0306429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980867

RESUMO

Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.


Assuntos
Brucella abortus , Células Endoteliais , Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Interferon gama , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Bacteriano/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/microbiologia , Brucelose/genética , Complexo de Golgi/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/efeitos dos fármacos
2.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38917779

RESUMO

Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.


Assuntos
Brucelose , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Recombinantes , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Brucelose/prevenção & controle , Brucelose/imunologia , Camundongos , Nanopartículas/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Camundongos Endogâmicos BALB C , Feminino , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/administração & dosagem , Brucella abortus/imunologia , Brucella abortus/genética , Portadores de Fármacos/química , Nanovacinas
3.
Int Immunopharmacol ; 137: 112443, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897124

RESUMO

Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.


Assuntos
Brucella suis , Brucelose , Macrófagos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Brucelose/imunologia , Brucelose/microbiologia , Brucelose/genética , Células RAW 264.7 , Brucella suis/imunologia , Brucella suis/genética , Brucella suis/patogenicidade , Virulência/genética , Macrófagos/imunologia , Deleção de Genes , Transdução de Sinais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Baço/imunologia , Inflamação/imunologia
4.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38755066

RESUMO

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Assuntos
Brucella melitensis , Brucelose , Placenta , Animais , Brucella melitensis/patogenicidade , Brucella melitensis/imunologia , Brucella melitensis/genética , Feminino , Ovinos , Brucelose/prevenção & controle , Brucelose/imunologia , Brucelose/veterinária , Gravidez , Placenta/microbiologia , Camundongos , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Trofoblastos/imunologia , Trofoblastos/microbiologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem
5.
Int Immunopharmacol ; 134: 112204, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703567

RESUMO

Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.


Assuntos
Vacina contra Brucelose , Brucella abortus , Brucelose , Lactococcus lactis , Camundongos Endogâmicos BALB C , Animais , Brucella abortus/imunologia , Brucelose/prevenção & controle , Brucelose/imunologia , Lactococcus lactis/genética , Lactococcus lactis/imunologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Camundongos , Feminino , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Epitopos/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Baço/imunologia , Vetores Genéticos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Citocinas/metabolismo
6.
Sci Rep ; 14(1): 11951, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789443

RESUMO

Brucellosis is a zoonotic disease with significant economic and healthcare costs. Despite the eradication efforts, the disease persists. Vaccines prevent disease in animals while antibiotics cure humans with limitations. This study aims to design vaccines and drugs for brucellosis in animals and humans, using protein modeling, epitope prediction, and molecular docking of the target proteins (BvrR, OMP25, and OMP31). Tertiary structure models of three target proteins were constructed and assessed using RMSD, TM-score, C-score, Z-score, and ERRAT. The best models selected from AlphaFold and I-TASSER due to their superior performance according to CASP 12 - CASP 15 were chosen for further analysis. The motif analysis of best models using MotifFinder revealed two, five, and five protein binding motifs, however, the Motif Scan identified seven, six, and eight Post-Translational Modification sites (PTMs) in the BvrR, OMP25, and OMP31 proteins, respectively. Dominant B cell epitopes were predicted at (44-63, 85-93, 126-137, 193-205, and 208-237), (26-46, 52-71, 98-114, 142-155, and 183-200), and (29-45, 58-82, 119-142, 177-198, and 222-251) for the three target proteins. Additionally, cytotoxic T lymphocyte epitopes were detected at (173-181, 189-197, and 202-210), (61-69, 91-99, 159-167, and 181-189), and (3-11, 24-32, 167-175, and 216-224), while T helper lymphocyte epitopes were displayed at (39-53, 57-65, 150-158, 163-171), (79-87, 95-108, 115-123, 128-142, and 189-197), and (39-47, 109-123, 216-224, and 245-253), for the respective target protein. Furthermore, structure-based virtual screening of the ZINC and DrugBank databases using the docking MOE program was followed by ADMET analysis. The best five compounds of the ZINC database revealed docking scores ranged from (- 16.8744 to - 15.1922), (- 16.0424 to - 14.1645), and (- 14.7566 to - 13.3222) for the BvrR, OMP25, and OMP31, respectively. These compounds had good ADMET parameters and no cytotoxicity, while DrugBank compounds didn't meet Lipinski's rule criteria. Therefore, the five selected compounds from the ZINC20 databases may fulfill the pharmacokinetics and could be considered lead molecules for potentially inhibiting Brucella's proteins.


Assuntos
Brucella , Biologia Computacional , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Brucella/química , Brucella/imunologia , Brucella/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Brucelose/prevenção & controle , Brucelose/imunologia , Animais
7.
Int Immunopharmacol ; 133: 112119, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648715

RESUMO

The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.


Assuntos
Brucelose , Flagelina , Macrófagos , Fatores de Virulência , Animais , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella suis/patogenicidade , Brucella suis/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Caspase 1/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Inflamassomos/imunologia , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células RAW 264.7 , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética
8.
Int Immunopharmacol ; 133: 112121, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652965

RESUMO

One effective antigen carrier proposed for use in immunization and vaccination is gold nanoparticles. Prior work has shown that gold nanoparticles themselves have adjuvant properties. Currently, gold nanoparticles are used to design new diagnostic tests and vaccines against viral, bacterial, and parasitic infections. We investigated the use of gold nanoparticles as immunomodulators in immunization and vaccination with an antigen isolated from Brucella abortus. Gold nanoparticles with a diameter of 15 nm were synthesized for immunization of animals and were then conjugated to the isolated antigen. The conjugates were used to immunize white BALB/c mice. As a result, high-titer (1:10240) antibodies were produced. The respiratory and proliferative activities of immune cells were increased, as were the serum interleukin concentrations. The minimum antigen amount detected with the produced antibodies was âˆ¼ 0.5 pg. The mice immunized with gold nanoparticles complexed with the B. abortus antigen were more resistant to B. abortus strain 82 than were the mice immunized through other schemes. This fact indicates that animal immunization with this conjugate enhances the effectiveness of the immune response. The results of this study are expected to be used in further work to examine the protective effect of gold nanoparticles complexed with the B. abortus antigen on immunized animals and to develop test systems for diagnosing brucellosis in the laboratory and in the field.


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias , Brucella abortus , Brucelose , Ouro , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Animais , Brucella abortus/imunologia , Ouro/química , Nanopartículas Metálicas/química , Brucelose/prevenção & controle , Brucelose/imunologia , Antígenos de Bactérias/imunologia , Camundongos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacinação , Imunização
9.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 879-891, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419498

RESUMO

Brucellosis is a global zoonotic infection caused by Brucella bacteria, which poses a significant burden on society. While transmission prevention is currently the most effective method, the absence of a licenced vaccine for humans necessitates the urgent development of a safe and effective vaccine. Recombinant protein-based subunit vaccines are considered promising options, and in this study, the Brucella BP26 protein is expressed using prokaryotic expression systems. The immune responses are evaluated using the well-established adjuvant CpG-ODN. The results demonstrate that rBP26 supplemented with a CpG adjuvant induces M1 macrophage polarization and stimulates cellular immune responses mediated by Th1 cells and CD8 + T cells. Additionally, it generates high levels of rBP26-specific antibodies in immunized mice. Furthermore, rBP26 immunization activates, proliferates, and produces cytokines in T lymphocytes while also maintaining immune memory for an extended period of time. These findings shed light on the potential biological function of rBP26, which is crucial for understanding brucellosis pathogenesis. Moreover, rBP26 holds promise as an effective subunit vaccine candidate for use in endemic areas.


Assuntos
Ativação de Macrófagos , Camundongos Endogâmicos BALB C , Células Th1 , Vacinas de Subunidades Antigênicas , Animais , Células Th1/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Camundongos , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Feminino , Brucelose/prevenção & controle , Brucelose/imunologia , Vacina contra Brucelose/imunologia , Brucella/imunologia , Macrófagos/imunologia , Linfócitos T CD8-Positivos/imunologia , Adjuvantes Imunológicos/farmacologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Oligodesoxirribonucleotídeos/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Proteínas de Membrana
10.
Microb Biotechnol ; 16(7): 1524-1535, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212362

RESUMO

Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.


Assuntos
Brucelose , Exossomos , Macrófagos , Brucella melitensis , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Exossomos/imunologia , Exossomos/microbiologia , Animais , Camundongos , Polaridade Celular , Antígenos de Bactérias/imunologia , Brucelose/imunologia , Brucelose/metabolismo , Transdução de Sinais , Espaço Intracelular/microbiologia , Viabilidade Microbiana
11.
Immunol Res ; 71(2): 247-266, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459272

RESUMO

Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.


Assuntos
Vacina contra Brucelose , Brucella suis , Brucelose , Animais , Humanos , Brucella suis/genética , Brucella suis/imunologia , Brucelose/genética , Brucelose/imunologia , Brucelose/prevenção & controle , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T , Escherichia coli , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/imunologia , Proteoma/genética , Proteoma/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Desenvolvimento de Vacinas , Desenho de Fármacos
12.
Front Immunol ; 13: 959328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032120

RESUMO

Brucella canis is the cause of canine brucellosis, a globally distributed, zoonotic pathogen which primarily causes disease in dogs. B. canis is unique amongst the zoonotic Brucella spp. with its rough lipopolysaccharide, a trait typically associated with attenuation in gram-negative bacteria. Unfortunately, no vaccine is available against B. canis, and vaccine development is hampered by a limited understanding of the immune response required to combat it and the course of infection following a physiologically relevant, mucosal route of inoculation. To address these concerns and analyze the impact of the rough phenotype on the immune response, we infected mice intratracheally with rough B. canis or smooth B. melitensis or B. abortus. Bacterial colonization and histologic lesions were assessed in systemic target organs as well as locally in the lungs and draining mediastinal lymph node. Mice were also reinfected with Brucella following antibiotic treatment and cytokine production by T lymphocytes in the lung and spleen was assessed by flow cytometry to investigate the memory immune response. Despite its rough phenotype, B. canis established a persistent infection at the same level of colonization as the smooth strains. However, B. canis induced significantly less granulomatous inflammation in the spleen as well as a lack of bronchial-associated lymphoid tissue (BALT) hyperplasia in the lungs. These differences coincided with increased IL-10 and decreased IFN-γ in the spleen of B. canis-infected mice. Previous exposure to all Brucella strains provided protection against colonization following secondary challenge, although induction of IFN-γ by T lymphocytes was seen only in the lungs during B. canis infection while the smooth strains induced this cytokine in the spleen as well. Neither Brucella strain induced significant polyfunctional T lymphocytes, a potential immunomodulatory mechanism that appears to be independent of lipopolysaccharide phenotype.


Assuntos
Brucella canis , Brucelose , Memória Imunológica , Animais , Brucella abortus , Brucella melitensis , Brucelose/imunologia , Citocinas , Imunidade , Lipopolissacarídeos , Camundongos
13.
J Microbiol Biotechnol ; 32(1): 6-14, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34675138

RESUMO

Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Brucella/genética , Brucella/imunologia , Brucelose/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Brucelose/microbiologia , Brucelose/patologia , Brucelose/prevenção & controle , Citocinas , Modelos Animais de Doenças , Feminino , Imunidade , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Baço/patologia , Virulência
14.
PLoS Pathog ; 17(9): e1009887, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34525130

RESUMO

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


Assuntos
Brucelose/imunologia , Carboxiliases/imunologia , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Animais , Isocitrato Liase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
EMBO J ; 40(19): e107664, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423453

RESUMO

Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum-derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system-mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans-Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase-activating Protein (GAP) ACAP1 to dysregulate Arf6-/Rab8a-dependent transport within the recycling endosome, which resulted in accretion of TGN-associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Brucella abortus/fisiologia , Brucelose/metabolismo , Brucelose/microbiologia , Interações Hospedeiro-Patógeno , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Brucelose/imunologia , Endossomos/metabolismo , Endossomos/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV , Rede trans-Golgi
16.
FASEB J ; 35(9): e21783, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403510

RESUMO

Melatonin is a pleiotropic molecule with a variety of biological functions, which include its immunoregulatory action in mammals. Brucellosis is a worldwide endemic zoonotic disease caused by the Brucella, which not only causes huge economic losses for the livestock industry but also impacts human health. To target this problem, in current study, two marker-free transgenic sheep overexpressing melatonin synthetic enzyme ASMT (acetylserotonin O-methyltransferase) gene were generated and these melatonin enrich transgenic sheep were challenged by Brucella infection. The results showed that the serum melatonin concentration was significantly higher in transgenic sheep than that of wild type (726.92 ± 70.6074 vs 263.10 ± 34.60 pg/mL, P < .05). Brucella challenge test showed that two thirds (4/6) of the wild-type sheep had brucellosis, while none of the transgenic sheep were infected. Whole-blood RNA-seq results showed that differential expression genes (DEGs) were significantly enriched in natural killer cell-mediated cytotoxicity, phagosome, antigen processing, and presentation signaling pathways in overexpression sheep. The DEGs of toll-like receptors (TLRs) and NOD-like receptors (NLRs) families were verified by qPCR and it showed that TLR1, TLR2, TLR7, CD14, NAIP, and CXCL8 expression levels in overexpression sheep were significantly higher and NLRP1, NLRP3, and TNF expression levels were significantly lower than those of wild type. The rectal feces were subjected to 16S rDNA amplicon sequencing, and the microbial functional analysis showed that the transgenic sheep had significantly lower abundance of microbial genes related to infectious diseases compared to the wild type, indicating overexpression animals are likely more resistant to infectious diseases than wild type. Furthermore, exogenous melatonin treatment relieved brucellosis inflammation by upregulating anti-inflammatory cytokines IL-4 and downregulating pro-inflammatory IL-2, IL-6, and IFN-γ. Our preliminary results provide an informative reference for the study of the relationship between melatonin and brucellosis.


Assuntos
Acetilserotonina O-Metiltransferasa/genética , Brucelose/genética , Brucelose/imunologia , Microbioma Gastrointestinal , Transdução de Sinais/imunologia , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Animais Geneticamente Modificados , Brucelose/prevenção & controle , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Mediadores da Inflamação/imunologia , Melatonina/uso terapêutico , Ovinos/imunologia
17.
J Immunol Methods ; 497: 113123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428402

RESUMO

Brucellosis is a well-known infectious disease in most parts of the world, especially in developing countries, common between humans and animals. Brucellosis is diagnosed by serological tests based on lipopolysaccharides (LPSs), which are bacterial cell wall antigens, and due to the similarities between LPSs antigens of some gram-negative bacterias, false-positive responses are inevitable. Alternatively, Outer membrane proteins (Omps), as antigenic conserved membrane proteins, can be used to diagnose brucellosis instead of LPS antigens. In this study, by using bioinformatics tools, linear B-cell epitopes were selected from Omp22, Omp25, and Omp31 antigens and fused with the rigid KP linker (K = Lysine, P=Proline). Designed gene cassette was cloned into pET-28a (+) vector and expressed recombinant protein was purified using Ni-NTA chromatography column and was confirmed with Poly-Histidine-HRP antibody. Finally, recombinant protein's seroreactivity with serum samples from 37 patients and 27 healthy individuals was evaluated by western blotting and enzyme-linked immunosorbent assay (ELISA) methods. Western blotting results showed high reactivity of the recombinant protein with serum samples of Brucella infected patients. ELISA results were analyzed using the receiver operating curve (ROC). Optical density cut-off point, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Youden index J for recombinant protein were > 0.809, 84.37%,83.78%,88.89%,88.57%, 79.31% and 0.72 respectively. Western blotting and ELISA results showed that our recombinant protein has good sensitivity and specificity for the diagnosis of brucellosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Western Blotting , Brucella melitensis/imunologia , Brucelose/diagnóstico , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B , Epitopos Imunodominantes , Testes Sorológicos , Brucelose/sangue , Brucelose/imunologia , Estudos de Casos e Controles , Humanos , Valor Preditivo dos Testes , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes
18.
Front Immunol ; 12: 697953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305935

RESUMO

Past studies with the live, double-mutant B. abortus (znBAZ) strain resulted in nearly complete protection of mice against pulmonary challenge with wild-type (wt) Brucella via a dominant CD8+ T cell response. To understand the contribution innate immune cells in priming CD8+ T cell responses, mice were nasally dosed with wt B. abortus, smooth vaccine strain 19 (S19), or znBAZ, and examined for innate immune cell activation. Flow cytometric analysis revealed that znBAZ, but not wt B. abortus nor S19 infection, induces up to a 5-fold increase in the frequency of IFN-γ-producing NK cells in mouse lungs. These NK cells express increased CXCR3 and Ki67, indicating their recruitment and proliferation subsequent to znBAZ infection. Their activation status was augmented noted by the increased NKp46 and granzyme B, but decreased NKG2A expression. Further analysis demonstrated that both lung caspase-1+ inflammatory monocytes and monocyte-derived macrophages secrete chemokines and cytokines responsible for NK cell recruitment and activation. Moreover, neutralizing IL-18, an NK cell-activating cytokine, reduced the znBAZ-induced early NK cell response. NK cell depletion also significantly impaired lung dendritic cell (DC) activation and migration to the lower respiratory lymph nodes (LRLNs). Both lung DC activation and migration to LRLNs were significantly impaired in NK cell-depleted or IFN-γ-/- mice, particularly the CD11b+ and monocytic DC subsets. Furthermore, znBAZ vaccination significantly induced CD8+ T cells, and upon in vivo NK cell depletion, CD8+ T cells were reduced 3-fold compared to isotype-treated mice. In summary, these data show that znBAZ induces lung IFN-γ+ NK cells, which plays a critical role in influencing lung DC activation, migration, and promoting protective CD8+ T cell development.


Assuntos
Vacina contra Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Animais , Brucella abortus/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa Respiratória/imunologia
19.
Rev. bras. ciênc. vet ; 28(3): 162-166, jul./set. 2021. ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-1491718

RESUMO

A suinocultura industrial compreende o conjunto de produtores que incorporam os avanços tecnológicos em genética, nutrição, sanidade e demais aspectos produtivos, enquanto a suinocultura de subsistência desempenha um papel importante para a alimentação humana, sendo a criação de suínos em criatórios amplamente difundida entre os pequenos proprietários de terra ou em assentamentos. Este trabalho teve como objetivo avaliar a pesquisa de anticorpos contra Brucella sp. nos suínos de granjas comerciais, criatórios de subsistência e javalis asselvajados. Foram visitados 32 criatórios de suínos domésticos localizados na região sul de Mato Grosso do Sul. Considerando-se os fenótipos, verificou-se que os sinais indicativos de contato têm influência do município onde está situada a propriedade (χ2=8.8594, p=0,0029), sendo que o município de Deodápolis tem uma chance de ocorrência mais elevada (OR=13,00;IC95%:2,12-79,59). Através da detecção fenotípicaobserva-sea presença de animais híbridos nas propriedades analisadas, e evidencia-se assim que os animais da propriedade em algum momento entraram em contato com suínos asselvajados, os quais podem ser responsáveis pela disseminação de diversas patologias. A ausência da detecção de anticorpos anti-Brucella sp. em suínos de criatórios sugere que a bactéria não é circulante nas populações de javalis nas áreas de estudo.


Industrial pig farming comprises the group of producers that incorporate technological advances in genetics, nutrition, health and other productive aspects, while subsistence pig farming plays an important role for human nutrition, with the creation of pigs in farms being widely spread among small farms. landowners or settlements. This study aimed to evaluate the search for antibodies against Brucella sp. pigs on commercial farms, livestock farms and wild boars. Were visited 32 domestic swine farms located in the southern region of Mato Grosso do Sul. Considering the phenotypes, it was found that the indicative signs of contact have influence from the municipality where the property is located (χ2=8.8594, p=0.0029) , and the municipality of Deodápolis has a higher chance of occurrence (OR=13,00;IC95%:2,12-79,59). Through the phenotypic detection, the presence of hybrid animals in the analyzed properties is clearly observed, and it is evident that the animals of the property at some point came into contact with pigs, which may be responsible for the spread of several pathogens. The absence of detection of anti-Brucella sp. in breeding pigs it suggests that the bacteria is not circulating in wild boar populations in the study areas.


Assuntos
Animais , Brucelose/imunologia , Estudos Soroepidemiológicos , Saúde Única , Suínos/microbiologia , Zoonoses
20.
Vector Borne Zoonotic Dis ; 21(8): 579-585, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077683

RESUMO

The immune response to Brucella abortus mainly depends on antigen-specific T cell activation, CD4+ and CD8+ T cells, and Brucella-specific humoral response. Protective immune response against Brucella infection has not been performed in the Sprague-Dawley (SD) rat model. We measured bacterial kinetics in addition to in vivo and in vitro interferon gamma (IFN-γ) and interleukin-10 (IL-10) production against crude Brucella protein in the SD rats at different days of postinfection with B. abortus biotype 1 by indirect enzyme-linked immunosorbent assay. Forty SD rats were inoculated intraperitoneally with 0.1 mL sterile injectable pyrogen-free solution containing 1 × 1010 colony-forming units/mL of B. abortus biotype 1 obtained from cattle in Korea. Four rats were used as uninfected control. Serum IFN-γ level at 3 and 7 days postinfection were significantly higher (p > 0.001) compared with the IL-10 level. On the contrary, serum IL-10 levels were observed significantly higher at 21 and 28 days postinfection compared with the serum IFN-γ levels (p < 0.001). The production of IFN-γ by spleen cells was significantly higher at 7 and 14 days postinfection compared with IL-10 (p < 0.001). On the contrary, IL-10 productions were found to be significantly higher at 21, 28, 35, and 42 days postinfection compared with IFN-γ (p < 0.001). The presence of B. abortus in blood was marked till 5 weeks of infection, throughout the experiment in case of spleen, and no bacteria were isolated from the kidney and liver at 6 weeks postinfection. The in vivo and in vitro IFN-γ and IL-10 measurement in our study reported that B. abortus infection in rats primarily educe T helper (Th)1-dominant immune response in acute infection accompanied by Th2-dominant immune response in chronic infection.


Assuntos
Brucelose , Interferon gama/análise , Interleucina-10/análise , Animais , Brucella abortus , Brucelose/imunologia , Brucelose/veterinária , Bovinos , Doenças dos Bovinos , Modelos Animais de Doenças , Infecção Persistente/imunologia , Infecção Persistente/veterinária , Ratos , Ratos Sprague-Dawley , Células Th1 , Células Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...