Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 71(1): 141-149, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880152

RESUMO

The MgAlO catalyst was obtained from thermal decomposition of the MgAl-LDH catalyst having Mg/Al molar ratio of 5. The catalytic Guerbet reaction of ethanol was investigated to determine the effect of WHSV and nitrogen flow rate on butanol production and product distribution. It was performed in a fixed-bed microreactor under continuous flow of vaporized ethanol mixed with N2. The MgAlO catalyst had high total basic sites and high total acid sites that were crucial for ethanol Guerbet reaction. The MgAlO catalyst showed the highest butanol selectivity at 300℃ under WHSV = 3.10 h-1 and nitrogen flow rate = 3,600 mL/h, and the highest butanol yield at 400℃ under WHSV = 3.10 h-1 and nitrogen flow rate = 900 mL/h. It can be summarized that in order to enhance the butanol yield, the low WHSV is preferred to increase the contact time of ethanol and catalyst under moderate temperature.


Assuntos
Alumínio/química , Butanóis/síntese química , Etanol/química , Hidróxidos/química , Magnésio/química , Biocombustíveis , Catálise , Temperatura Alta , Nitrogênio/química , Volatilização
2.
Methods Mol Biol ; 2290: 3-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009579

RESUMO

Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.


Assuntos
Biotecnologia/métodos , Butanóis/metabolismo , Biocombustíveis , Biomassa , Butanóis/síntese química , Butanóis/química , Celulose , Fermentação , Glicerol/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Microalgas/metabolismo , Saccharum
3.
Nat Chem ; 12(4): 412-423, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203445

RESUMO

The Soai reaction has profoundly impacted chemists' perspective of autocatalysis, chiral symmetry breaking, absolute asymmetric synthesis and its role in the origin of biological homochirality. Here we describe the unprecedented observation of asymmetry-amplifying autocatalysis in the alkylation of 5-(trimethylsilylethynyl)pyridine-3-carbaldehyde using diisopropylzinc. Kinetic studies with a surrogate substrate and spectroscopic analysis of a series of zinc alkoxides that incorporate specific structural mutations reveal a 'pyridine-assisted cube escape'. The new tetrameric cluster functions as a catalyst that activates the substrate through a two-point binding mode and poises a coordinated diisopropylzinc moiety for alkyl group transfer. Transition-state models leading to both the homochiral and heterochiral products were validated by density functional theory calculations. Moreover, experimental and computational analysis of the heterochiral complex provides a definitive explanation for the nonlinear behaviour of this system. Our deconstruction of the Soai system reveals the structural logic for autocatalyst evolution, function and substrate compatibility-a central mechanistic aspect of this iconic transformation.


Assuntos
Aldeídos/química , Butanóis/síntese química , Piridinas/síntese química , Catálise , Teoria da Densidade Funcional , Cinética , Modelos Químicos , Compostos Organometálicos/química , Estereoisomerismo , Zinco/química
4.
Microb Cell Fact ; 17(1): 154, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261894

RESUMO

BACKGROUND: Coffee silverskin, a by-product from coffee roasting industries, was evaluated as a feedstock for biobutanol production by acetone-butanol-ethanol fermentation. This lignocellulosic biomass contained approximately 30% total carbohydrates and 30% lignin. Coffee silverskin was subjected to autohydrolysis at 170 °C during 20 min, with a biomass-to-solvent ratio of 20%, and a subsequent enzymatic hydrolysis with commercial enzymes in order to release simple sugars. The fermentability of the hydrolysate was assessed with four solventogenic strains from the genus Clostridium. In addition, fermentation conditions were optimised via response surface methodology to improve butanol concentration in the final broth. RESULTS: The coffee silverskin hydrolysate contained 34.39 ± 2.61 g/L total sugars, which represents a sugar recovery of 34 ± 3%. It was verified that this hydrolysate was fermentable without the need of any detoxification method and that C. beijerinckii CECT 508 was the most efficient strain for butanol production, attaining final values of 4.14 ± 0.21 g/L acetone, 7.02 ± 0.27 g/L butanol and 0.25 ± 0.01 g/L ethanol, consuming 76.5 ± 0.8% sugars and reaching a butanol yield of 0.269 ± 0.008 gB/gS under optimal conditions. CONCLUSIONS: Coffee silverskin could be an adequate feedstock for butanol production in biorefineries. When working with complex matrices like lignocellulosic biomass, it is essential to select an adequate bacterial strain and to optimize its fermentation conditions (such as pH, temperature or CaCO3 concentration).


Assuntos
Butanóis/síntese química , Carboidratos/química , Café/química , Fermentação
5.
J Org Chem ; 83(2): 980-992, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29271194

RESUMO

A reliable protocol to synthesize both racemic and chiral (E)-4-iodobut-3-en-1-ols from aldehydes or epoxides, respectively, containing various aromatic and aliphatic substitutions has been established. The utility of these compounds was then demonstrated by providing access to known fungal decanolides as well as novel aromatic macrocycles. The protocol provided a gram-scale route to (-)-aspinolide A and (-)-5-epi-aspinolide A utilizing a catalytic Nozaki-Hiyama-Kishi reaction to close the macrolide in the final step in 65-84% yields.


Assuntos
Butanóis/síntese química , Lactonas/síntese química , Compostos Macrocíclicos/síntese química , Aldeídos/química , Butanóis/química , Compostos de Epóxi/química , Lactonas/química , Compostos Macrocíclicos/química , Estrutura Molecular , Estereoisomerismo
6.
Bioresour Technol ; 221: 412-418, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660992

RESUMO

To enhance the butanol productivity and reduce the material cost, acetone, butanol, and ethanol fermentation by Clostridium acetobutylicum SE25 was investigated using batch, repeated-batch and continuous cultures in a fibrous bed bioreactor, where cassava flour was used as the substrate. With periodical nutrient supplementation, stable butanol production was maintained for about 360h in a 6-cycle repeated-batch fermentation with an average butanol productivity of 0.28g/L/h and butanol yield of 0.32g/g-starch. In addition, the highest butanol productivity of 0.63g/L/h and butanol yield of 0.36g/g-starch were achieved when the dilution rate were investigated in continuous production of acetone, butanol, and ethanol using a fibrous bed bioreactor, which were 231.6% and 28.6% higher than those of the free-cell fermentation. On the other hand, this study also successfully comfirmed that the biofilm can provide an effective protection for the microbial cells which are growing in stressful environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Butanóis/síntese química , Clostridium acetobutylicum/metabolismo , Manihot/química , Fermentação , Farinha/análise , Solventes
7.
ChemSusChem ; 9(13): 1680-8, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226396

RESUMO

Rh-MoOx /SiO2 (Mo/Rh=0.13) is an effective catalyst for the hydrogenolysis of 1,4-anhydroerythritol (1,4-AHERY) and provides 2-BuOH in high yield of 51 %. This is the first report of the production of 2-BuOH from 1,4-AHERY by hydrogenolysis. 1,4-AHERY was more suitable as a starting material than erythritol because the 2-BuOH yield from erythritol was low (34 %). Based on the kinetics and comparison of reactivities of the related compounds using Rh-MoOx /SiO2 and Rh/SiO2 catalysts, the modification of Rh/SiO2 with MoOx leads to the high activity and high selectivity to 2-BuOH because of the generation of reactive hydride species and the strong adsorption of 1,4-AHERY on MoOx species. The reaction proceeds by main two routes, (I) the combination of single C-O hydrogenolysis with the desorption of intermediates, a usual route in hydrogenolysis, and (II) multiple C-O hydrogenolysis without the desorption of intermediates from the active site, and the reaction mechanism for Route (II) is proposed.


Assuntos
Butanóis/química , Butanóis/síntese química , Eritritol/análogos & derivados , Molibdênio/química , Óxidos/química , Ródio/química , Dióxido de Silício/química , Técnicas de Química Sintética , Eritritol/química , Hidrogênio/química , Cinética
8.
Biotechnol Prog ; 32(1): 66-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26560680

RESUMO

Producing fuels and chemical intermediates with cell cultures is severely limited by low product concentrations (≤0.2%(v/v)) due to feedback inhibition, cell instability, and lack of economical product recovery processes. We have developed an alternate simplified production scheme based on a cell-free immobilized enzyme system. Two immobilized enzymes (keto-acid decarboxylase (KdcA) and alcohol dehydrogenase (ADH)) and one enzyme in solution (formate dehydrogenase (FDH) for NADH recycle) produced isobutanol titers 8 to 20 times higher than the highest reported titers with S. cerevisiae on a mol/mol basis. These high conversion rates and low protein leaching were achieved by covalent immobilization of enzymes (ADH) and enzyme fusions (fKdcA) on methacrylate resin. The new enzyme system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.135 (mole isobutanol produced for each mole ketoisovaleric acid consumed). Further increasing titer will require continuous removal of the isobutanol using an in situ recovery system.


Assuntos
Biocombustíveis , Butanóis/síntese química , Carboxiliases/química , Enzimas Imobilizadas/química , Álcool Desidrogenase/química , Butanóis/química , Sistema Livre de Células , Escherichia coli/enzimologia , Escherichia coli/genética , Formiato Desidrogenases/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
9.
Bioorg Med Chem ; 23(20): 6650-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386819

RESUMO

Rhododendrol derivatives 3-12 have been synthesized in six steps, including aldol condensation and/or trichloroacetimidate glycosylation as the key reactions. Each derivative showed effective inhibition of tyrosinase-catalyzed oxidation processes. In particular, a series of synthetic derivatives having an R-stereogenic center at C-2 proved to be more potent than their respective epimers. In addition, the glycosylation on the phenylbutanoid scaffold increased the difference in activity between the isomers. This suggests that the sugar moiety plays an important role in eliciting their potent inhibitory activity.


Assuntos
Butanóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Butanóis/síntese química , Butanóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicosídeos/síntese química , Glicosídeos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
10.
J Biotechnol ; 191: 106-12, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25036751

RESUMO

The stereoselective production of (R)- or (S)-2-butanol is highly challenging. A potent synthesis strategy is the biocatalytic asymmetric reduction of 2-butanone applying alcohol dehydrogenases. However, due to a time-dependent racemisation process, high stereoselectivity is only obtained at incomplete conversion after short reaction times. Here, we present a solution to this problem: by using a continuous process, high biocatalytic selectivity can be achieved while racemisation is suppressed successfully. Furthermore, high conversion was achieved by applying recombinant, lyophilised E. coli cells hosting Lactobacillus brevis alcohol dehydrogenase in a micro-aqueous solvent-free continuous reaction system. The optimisation of residence time (τ) and 2-butanone concentration boosted both conversion (>99%) and enantiomeric excess (ee) of (R)-2-butanol (>96%). When a residence time of only τ=3.1 min was applied, productivity was extraordinary with a space-time yield of 2278±29g/(L×d), thus exceeding the highest values reported to date by a factor of more than eight. The use of E. coli cells overexpressing an ADH of complementary stereoselectivity yielded a synthesis strategy for (S)-2-butanol with an excellent ee (>98%). Although conversion was only moderate (up to 46%), excellent space-time yields of up to 461g/(L×d) were achieved. The investigated concept represents a synthesis strategy that can also be applied to other biocatalytic processes where racemisation poses a challenge.


Assuntos
Álcool Desidrogenase/química , Biocatálise , Butanóis/síntese química , Escherichia coli/genética , Álcool Desidrogenase/genética , Butanóis/química , Butanonas/química , Escherichia coli/enzimologia , Levilactobacillus brevis/enzimologia , Levilactobacillus brevis/genética , Proteínas Recombinantes , Estereoisomerismo , Especificidade por Substrato
11.
Chirality ; 26(12): 811-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25065812

RESUMO

The lipase-catalyzed enantioselective hydrolysis of acetates containing tetrazole moiety was studied. Among all tested lipases, Novozyme SP 435 allowed to obtain optically active 4-(5-aryl-2H-tetrazol-2yl)butan-2-ol and 1-(5-aryl-2H-tetrazol-2yl)-propan-2-ol and their acetates with the highest optical purities (ee = 95%-99%) and excellent enantioselectivity (E>100). Some of the synthesized tetrazole derivatives were screened for their antifungal activity. Racemic mixtures of 4-[5-(4-chlorophenyl)-2H-tetrazol-2-yl)butan-2-ol as well as pure enantiomers of this compound showed promising antifungal activity against F. sambucinum, F. oxysporum, C. coccodes, and A. niger.


Assuntos
Antifúngicos/farmacologia , Butanóis/química , Ésteres/química , Lipase/química , Propanóis/química , Tetrazóis/química , Acetatos/química , Antifúngicos/química , Butanóis/síntese química , Butanóis/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Enzimas Imobilizadas , Proteínas Fúngicas , Hidrólise , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Propanóis/síntese química , Propanóis/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/farmacologia
12.
Bioresour Technol ; 161: 263-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24717319

RESUMO

This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes.


Assuntos
Butanóis/síntese química , Fermentação , Ácido Succínico/metabolismo , Butanóis/economia , Catálise , Ácido Succínico/economia
13.
Bioorg Med Chem Lett ; 24(1): 122-5, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332496

RESUMO

The concise synthesis of rhododendrol glycosides 3-8, which are novel derivatives of (+)-epirhododendrin (1) and (-)-rhododendrin (2), has been achieved in six steps from benzaldehyde 9. The key reactions include aldol condensation and trichloroacetimidate glycosylation. From biological studies, it has been determined that synthetic derivatives of 1 and 2 possess potent tyrosinase inhibitory activity. Particularly, the inhibitory activity of cellobioside 8 (IC50=1.51µM) is six times higher than that of kojic acid. The R-epimers (4, 6, and 8) possessed more potent activity than the corresponding S-epimers (3, 5, and 7), indicating that tyrosinase inhibitory activity is significantly governed by stereochemistry of rhododendrol glycosides.


Assuntos
Butanóis/síntese química , Butanóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeos/síntese química , Glicosídeos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Butanóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicosídeos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 22(8): 2811-7, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22444683

RESUMO

A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.


Assuntos
Carboxipeptidases/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos , Animais , Butanóis/síntese química , Butanóis/química , Butanóis/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/tratamento farmacológico , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia
15.
Eur J Med Chem ; 47(1): 351-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22118829

RESUMO

A group of 4-(benzyloxy)-1-phenylbut-2-yn-1-ol derivatives were designed using Site point connection method, synthesized and evaluated for their 5-Lipoxygenase (5-LOX) inhibitory activity. Hydrophobic site points in 5-LOX were considered for the study and substitutions were planned such that 4k will have strong hydrophobic group in the corresponding site point. Biological results supported the in silico prediction with compound 4k exhibiting good inhibition with IC(50) value of 8 µM against 5-LOX. The compounds 4j and 4k showed potent cytotoxic effects against various cancer cell lines (COLO-205, MDA-MB-231 and HepG2) but with no effect on normal cell line (HaCaT). The overall trend showed 4k as the most potent compound. Further studies demonstrated the protective effect of 4k in mouse Acute Lung Injury (ALI) model induced by lipopolysaccharide (LPS).


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Butanóis/química , Butanóis/farmacologia , Desenho de Fármacos , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Araquidonato 5-Lipoxigenase/química , Compostos de Benzil/síntese química , Butanóis/síntese química , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Inibidores de Lipoxigenase/síntese química , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade
16.
Bioresour Technol ; 102(21): 9985-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21893411

RESUMO

Mixed sugars from tropical maize stalk juice were used to carry out butanol fermentation with Clostridium beijerinckii NCIMB 8052. Batch experiments employing central composite design (CCD) and response surface methodology (RSM) optimization were performed to evaluate effects of three factors, i.e. pH, initial total sugar concentration, and agitation rate on butanol production. Optimum conditions of pH 6.7, sugar concentration 42.2g/L and agitation rate 48 rpm were predicted, under which a maximum butanol yield of 0.27 g/g-sugar was estimated. Further experiments demonstrated that higher agitation facilitated acetone production, leading to lower butanol selectivity in total acetone-butanol-ethanol (ABE). While glucose and fructose are more preferable by C. beijerinckii, sucrose can also be easily degraded by the microorganism. This study indicated that RSM is a useful approach for optimizing operational conditions for butanol production, and demonstrated that tropical maize, with high yield of biomass and stalk sugars, is a promising biofuel crop.


Assuntos
Biotecnologia/métodos , Butanóis/síntese química , Clostridium beijerinckii/metabolismo , Fermentação/fisiologia , Clima Tropical , Resíduos/análise , Zea mays/química , Acetona/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos/farmacologia , Clostridium beijerinckii/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Análise de Regressão , Reprodutibilidade dos Testes , Solventes
17.
Bioresour Technol ; 102(2): 2112-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20843683

RESUMO

In this study, the potential of biobutanol was evaluated as an alternative to bioethanol which is currently the predominant liquid biofuel in the US. Life-cycle assessments (LCAs) suggest that the net energy generated during corn-to-biobutanol conversion is 6.53 MJ/L, which is greater than that of the corn-derived bioethanol (0.40 MJ/L). Additionally, replacing corn with lignocellulosic materials in bioethanol production can further increase the net energy to 15.90 MJ/L. Therefore, it was interesting to study the possibility of using domestically produced switchgrass, hybrid poplar, corn stover, and wheat straw as feedstocks to produce liquid biofuels in the US. By sustainable harvest based on current yields, these materials can be converted to 8.27 billion gallons of biobutanol replacing 7.55 billion gallons of gasoline annually. To further expand the scale, significant crop yield increases and appropriate land use changes are considered two major requirements.


Assuntos
Biocombustíveis/análise , Biomassa , Butanóis/síntese química , Etanol/síntese química , Estudos de Viabilidade , Fermentação , Lignina/metabolismo , Termodinâmica
18.
Eur J Med Chem ; 46(1): 183-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21111516

RESUMO

This study presents the synthesis of novel substituted 4-hydroxybutanamides and their influence on the activity of murine GABA transport proteins GAT1-GAT4. The active compounds, derivatives of N-arylalkyl-2-(4-diphenylmethylpiperazin-1-yl)-4-hydroxybutyramide, are characterized by pIC(50) values in range of 3.92-5.06 and by slight subtype-selectivity. Among them N-4-chlorobenzylamide was the most potent GAT inhibitor (mGAT3), while N-benzylamide was the most active in GAT1-binding assay (pK(i) = 4.96). The results pointed out that benzhydryl and benzylamide moieties are crucial for the activity of this class of compounds as murine GAT inhibitors.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Butanóis/química , Butanóis/farmacologia , Inibidores da Captação de GABA/química , Inibidores da Captação de GABA/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Anticonvulsivantes/síntese química , Transporte Biológico/efeitos dos fármacos , Butanóis/síntese química , Avaliação Pré-Clínica de Medicamentos , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inibidores da Captação de GABA/síntese química , Concentração Inibidora 50 , Camundongos
19.
Bioorg Med Chem Lett ; 20(16): 4789-94, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20634069
20.
BMC Syst Biol ; 4: 35, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20346180

RESUMO

BACKGROUND: There have been several methods developed for the prediction of synthetic metabolic pathways leading to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on specific pathways, and thus are limited to expansion to the whole metabolism. RESULTS: In the present study, we propose a system framework employing a retrosynthesis model with a prioritization scoring algorithm. This new strategy allows deducing the novel promising pathways for the synthesis of a desired chemical together with information on enzymes involved based on structural changes and reaction mechanisms present in the system database. The prioritization scoring algorithm employing Tanimoto coefficient and group contribution method allows examination of structurally qualified pathways to recognize which pathway is more appropriate. In addition, new concepts of binding site covalence, estimation of pathway distance and organism specificity were taken into account to identify the best synthetic pathway. Parameters of these factors can be evolutionarily optimized when a newly proven synthetic pathway is registered. As the proofs of concept, the novel synthetic pathways for the production of isobutanol, 3-hydroxypropionate, and butyryl-CoA were predicted. The prediction shows a high reliability, in which experimentally verified synthetic pathways were listed within the top 0.089% of the identified pathway candidates. CONCLUSIONS: It is expected that the system framework developed in this study would be useful for the in silico design of novel metabolic pathways to be employed for the efficient production of chemicals, fuels and materials.


Assuntos
Bactérias/metabolismo , Biologia de Sistemas/métodos , Acil Coenzima A/síntese química , Algoritmos , Sítios de Ligação , Biocombustíveis , Butanóis/síntese química , Química Orgânica/métodos , Química Farmacêutica/métodos , Escherichia coli/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/síntese química , Modelos Teóricos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...