Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502161

RESUMO

Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to reduced azole sensitivity when compared to Cps. RNA-Seq and bioinformatic analyses found that following azole treatment, 55 genes in Cps, belonging to diverse pathways, displayed a significant decrease in expression. Putative xenobiotic detoxification genes overexpressed in tetraconazole-treated Che encoded predicted monooxygenase and oxidoreductase enzymes. In summary, expression of a functional CYP51A gene and overexpression of predicted xenobiotic detoxification genes appear likely to contribute to differential fungicide sensitivity in these two sister taxa.


Assuntos
Azóis/farmacologia , Buxus/efeitos dos fármacos , Buxus/genética , Buxus/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Biologia Computacional/métodos , Farmacorresistência Fúngica , Ergosterol/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Genômica/métodos , Hypocreales/efeitos dos fármacos , Inativação Metabólica/genética , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Transcriptoma
2.
Environ Sci Pollut Res Int ; 25(28): 28695-28704, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30097985

RESUMO

The contamination of soil with heavy metals is a severe problem due to adverse impact of heavy metals on environmental safety and human health. It is essential to remediate soil contaminated with heavy metals. This study has evaluated the effects of pine biochar, kaolin, and triple super phosphate (TSP) on multiple heavy metals (Ni, Zn, Cu, and Cd) in contaminated soil and accumulation of heavy metals in plants. The amendments can reduce availability of heavy metals in soil by increasing pH, adsorption, complexation, or co-precipitation. Different amendments have variable effects on accumulation of heavy metals in plants and in soil due to its diverse mechanism of stability. The results showed that application of triple super phosphate (TSP) has significant reduced soil Cd exchangeable (EXC) fraction from 58.59 to 21.30%. Bound to carbonates (CAR) fraction decreased from 9.84 to 5.11%, and bound to Fe-Mn oxides (OX) fraction increased from 29.61 to 69.86%. The triple super phosphate (TSP) has the ability to stabilize Cu and especially Cd. However, triple super phosphate (TSP) has enhanced ecological risk of Zn and Ni. Application of pine biochar has significantly enhanced soil pH. The kaolin has significantly reduced EXC fraction of Cd and increased OX fraction of Cu. The amendments and heavy metals have not caused significant effect on SPAD value of Buxus microphylla Siebold & Zucc (B. microphylla). The triple super phosphate (TSP) has significant decreased biomass of B. microphylla and bamboo-williow (Salix sp.) by 24.91 and 57.43%, respectively. Pine biochar and kaolin have increased the accumulation of Zn and Cd in plants. It is concluded that triple super phosphate (TSP) was effective in remediation of Cd and kaolin was effective in remediation of Cd and Cu. Pine biochar was effective in remediation of Cd, Cu, and Zn.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Metais Pesados/farmacocinética , Poluentes do Solo/farmacocinética , Buxus/efeitos dos fármacos , Buxus/metabolismo , China , Difosfatos/química , Concentração de Íons de Hidrogênio , Caulim/química , Pinus/química , Salix/efeitos dos fármacos , Salix/metabolismo , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...